Herbívoros de médio e grande porte do Cerrado: influência na ecologia de plantas e comportamento de forrageio

Marina Peres Portugal

Belo Horizonte

2012
Herbívoros de médio e grande porte do Cerrado: influência na ecologia de plantas e comportamento de forrageio

Dissertação apresentada ao Programa de Pós-Graduação em Ecologia Conservação e Manejo da Vida Silvestre do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais como requisito parcial para a obtenção do título de Mestre em Ecologia.

Orientador: Flávio Henrique Guimarães Rodrigues, PhD.

Co-orientador: Adriano Pereira Paglia, PhD.

Belo Horizonte
<table>
<thead>
<tr>
<th>TÍTULO</th>
<th>PÁGINA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRADECIMENTOS</td>
<td>1</td>
</tr>
<tr>
<td>LISTA DE FIGURAS</td>
<td>3</td>
</tr>
<tr>
<td>LISTA DE TABELAS</td>
<td>5</td>
</tr>
<tr>
<td>RESUMO</td>
<td>6</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>7</td>
</tr>
<tr>
<td>INTRODUÇÃO GERAL</td>
<td>8</td>
</tr>
<tr>
<td>CAPÍTULO I- Efeito do fogo e da herbivoria por grandes vertebrados na reprodução de espécies herbáceas no Cerrado</td>
<td>10</td>
</tr>
<tr>
<td>RESUMO</td>
<td>10</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>12</td>
</tr>
<tr>
<td>INTRODUÇÃO</td>
<td>13</td>
</tr>
<tr>
<td>MATERIAL E MÉTODOS</td>
<td>16</td>
</tr>
<tr>
<td>Área de estudo</td>
<td>16</td>
</tr>
<tr>
<td>Delineamento amostral</td>
<td>18</td>
</tr>
<tr>
<td>Análise de dados</td>
<td>23</td>
</tr>
<tr>
<td>RESULTADOS</td>
<td>24</td>
</tr>
<tr>
<td>DISCUSSÃO</td>
<td>34</td>
</tr>
<tr>
<td>Abundância de herbívoros</td>
<td>34</td>
</tr>
<tr>
<td>Efeito da exclusão dos herbívoros</td>
<td>35</td>
</tr>
<tr>
<td>Efeito do Fogo</td>
<td>39</td>
</tr>
<tr>
<td>CONSIDERAÇÕES FINAIS</td>
<td>44</td>
</tr>
<tr>
<td>REFERÊNCIAS</td>
<td>46</td>
</tr>
<tr>
<td>CAPÍTULO II- Forrageio do veado-campeiro (Ozotoceros bezoarticus) em manchas de flores no Cerrado</td>
<td>54</td>
</tr>
<tr>
<td>RESUMO</td>
<td>54</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>55</td>
</tr>
<tr>
<td>INTRODUÇÃO</td>
<td>56</td>
</tr>
</tbody>
</table>
AGRADECIMENTOS

Agradeço primeiro aos meus pais que me deram todo o apoio e carinho durante os estudos e realização do projeto. Ao meu pai por ter me acompanhado pessoalmente no início do projeto, deixando suas coisas de lado para me ajudar, além do apoio em todas as conversas por telefone e momentos de dificuldade. À minha mãe pela disposição em ajudar mesmo à distância e pelo carinho nos momentos mais difíceis. Muito obrigada, o apoio de vocês foi essencial para vencer esta etapa!

Aos meus irmãos, Rodrigo e Daniela, e família pelo carinho e apoio.

Ao Flávio, meu orientador, pela oportunidade de fazer este trabalho e amizade, por todas as conversas, paciência e discussões sobre o projeto.

Ao Adriano Paglia pelas ajudas estatísticas e conversas.

À equipe do Mameco por todas as conversas, alegria, sugestões e apoio nos momentos difíceis. À Nadja, pela companhia, amizade e conversas infináveis.

Aos amigos que me incentivaram e me apoiaram durante o todo o trabalho. À Chica (Fernanda Penido) pela amizade e por me encorajar sempre durante o mestrado. Às JuLuCanTaRiLi por estarem presentes em todos os momentos da minha vida. Aos amigos do GESA pela amizade e alegria.

A todos os estagiários e ajudantes, pois sem eles o trabalho não teria saído do papel. À Julia, por ter iniciado o trabalho comigo e ter enfrentado todas as dificuldades de viver e trabalhar em campo. À Ana Luiza, pela sua perseverança e bom humor para fazer o trabalho e sua companhia nos momentos de comemoração. Ao Guilherme, que apesar de sentir grande falta do mar, trabalhou duro sob o sol ou sob a chuva me ajudando sempre. Ao Ericson, amigo querido, pela companhia e ajuda em todos os momentos que esteve comigo. Ao querido Augusto, pela grande ajuda e incentivo nos momentos finais e pela paciência comigo. À Mariana e Vanessa por terem me ajudado nas atividades em laboratório.

A todos os funcionários do Parque Nacional das Emas, pela recepção no parque e ajuda durante o trabalho. Ao diretor Marcos, por ter acreditado na pesquisa e por me ajudar durante a estadia no parque. Ao Steigle, pela ajuda na construção das cercas, coleta de dados e
companhia nas noites de filmes e comilanças. À Joana e “Dona Mocinha” por todos os almoços deliciosos.

Ao Danilo por ter ajudado antes e durante o trabalho na identificação das plantas.

Ao Professor Pires, Socorro e demais integrantes do laboratório de Fisiologia Vegetal pela disposição em ajudar.

À equipe do laboratório de Paleontologia, por toda a companhia, cafés e conversas encorajadoras. Ao Dino em especial pelo suporte informático.

À Fundação O Boticário pelo financiamento do projeto e à Fundep pela gestão dos recursos.

Ao ICMBIO pelo alojamento no PNE.

À USFISH/FAPEMIG pelos recursos para diárias de campo.

Ao Programa de Pós-graduação em Ecologia, Conservação e Manejo da Vida Silvestre por todo o suporte.

Ao CNPq pela bolsa de mestrado.

E finalmente, aos veados campeiros, antas e lobos-guarás por terem colaborado com o projeto e todos os companheiros animais que me alegraram durante este projeto.
LISTA DE FIGURAS

CAPÍTULO I

Figura 1: Localização e tipos de vegetação do Parque Nacional das Emas, Goiás, Brasil. Retirado de Becker et al. (2007)..............................................................17

Figura 2: Área queimada no incêndio de agosto de 2010 (91% da área total) no Parque Nacional das Emas, Goiás. Retirado de França et al. (2010).................................18

Figura 3: Exemplo de parcela de exclusão instalada em área recentemente queimada no Parque Nacional das Emas, Goiás .................................................................19

Figura 4: Localização dos 4 locais utilizados para implantação das parcelas de vegetação com suas letras de identificação, no Parque Nacional das Emas. Círculos brancos representam áreas não queimadas amostradas, e os círculos pretos as áreas queimadas. A identificação das áreas foi feita de acordo com as marcações de encruzilhadas do PNE. Imagens retiradas do Google ©2009. ........................................................................................................19

Figura 5: Posicionamento das parcelas das parcelas de areia (quadrados sombreados) ao redor das parcelas de exclusão (hachurada) e controle (pontos pretos) no Parque Nacional das Emas, Goiás. A figura não está em escala.................................................................14


Figura 7: Médias e intervalos de confiança (95%) da produção de recursos por Campomanesia adamantium com relação à passagem do fogo nas áreas de estudo: A- produção de flores (F1;175=4,20; p=0,04); B- produção de frutos (F1;175=8,61; p =0,003). 18

Figura 8: Médias e intervalos de confiança (95%) da produção de recursos por Manihot tripartita com relação à passagem do fogo nas áreas de estudo: A- produção de botões (F11;704=2.22; p=0,11); B- produção de frutos (F11;748=2.58; p =0,003). .........................27
Figura 9: Média dos registros totais de pegadas de herbívoros de médio de grande porte e intervalos de confiança nas áreas queimadas (Q) e não queimadas (N) no Parque Nacional das Emas, Goiás, de novembro de 2010 a fevereiro de 2011. .................................................................29

CAPÍTULO II


Figura 2: Pesquisadora acompanhando o forrageio de um indivíduo de veado-campeiro (*Ozotoceros bezoarticus*) em área de campo sujo no Parque Nacional das Emas, Goiás. .......61

Figura 3: Indivíduo de *Manihot tripartita* e os seus recursos (círculos brancos) utilizados pelo veado-campeiro durante o seu forrageio: inflorescência de botões e fruto. .................................................64

Figura 4: Médias e intervalos de confiança (95%) da quantidade total de recursos (t=3,06; gl=53,26; p=0,003) e da quantidade de frutos por planta e número de plantas avaliadas (n) em relação às decisões de forrageio do veado-campeiro. ...........................................................65

Figura 5: Padrão de forrageio do veado-campeiro em relação ao número total de recursos presente em manchas de *M. tripartita* (*y* = 2,166+0.075*x*; *r*=0,36, *p*<0,001) no Parque Nacional das Emas, Goiás. ..................................................................................66

Figura 6: Padrão de forrageio do veado-campeiro em relação ao número de recursos preferenciais (frutos) presente em manchas de *M. tripartita* (*y* = 0,295+0,456*x*; *r*=0,75; *p*<0,001) no Parque Nacional das Emas, Goiás. ..................................................................................66

Figura 7: Proporção de ingestão de recursos pelo veado-campeiro em relação ao total existente em manchas de *M. tripartita* (*y* = 0,41-0,006*x*; *r* = -0,42; *p*<0,001) no Parque Nacional das Emas, Goiás. ..................................................................................67

Figura 8: Proporção de ingestão de recursos pelo veado-campeiro em relação aos recursos preferenciais existentes em manchas de *M. tripartita* no Parque Nacional das Emas, Goiás. 67
LISTA DE TABELAS

CAPÍTULO I

Tabela 1: Medidas de tamanho (cm) para cada espécie estudada nas áreas queimadas e não queimadas do Parque Nacional das Emas, Goiás. .................................................................27

Tabela 2: Número total dos registros de pegada dos herbívoros de médio e grande porte e separados de acordo com as espécies mais abundantes, veado-campeiro (*O. bezoarticus*), anta (*T. terrestris*) e lobo-guará (*C. brachyurus*) .................................................................28

Tabela 3: Produção de recursos reprodutivos por espécie vegetal em relação à exclusão de herbívoros, ocorrência do fogo e tamanho da planta no Parque Nacional das Emas, Goiás. Transf- Transformação utilizada; NQ- Não Queimado; Q- Queimado; Excl.- Exclusão; Loc.- Local; Cov.- covariável.; Alt- Altura média da planta; Diâm.- Diâmetro médio da copa do arbusto ou erva. Resultados significativos estão em negrito. .................................................................30

Tabela 4: Produção de recursos reprodutivos de *Campomanesia adamantium* em relação às parcelas de exclusão, ocorrência do fogo e tamanho da planta no Parque Nacional das Emas, Goiás. Transf- Transformação utilizada; Alt- Altura média da planta; Diâm.- Diâmetro médio da copa do arbusto. ..................................................................................................................32

Tabela 5: Características das sementes de *Campomanesia adamantium* em relação aos tratamentos de exclusão no Parque Nacional das emas, Goiás. ........................................................................32

Tabela 6: Características das sementes de *Dimmerostema brasilianum* em relação aos tratamentos de exclusão e fogo no Parque Nacional das emas, Goiás. “N” corresponde ao número de indivíduos analisados. .................................................................................................33

Tabela 7: Características das sementes de *Manihot tripartita* em relação aos tratamentos de exclusão e fogo no Parque Nacional das emas, Goiás. “N” corresponde ao número de indivíduos analisados ...................................................................................................................33

Tabela 8: Características das sementes de *Viguiera grandiflora* em relação aos tratamentos de exclusão e fogo no Parque Nacional das emas, Goiás. “N” corresponde ao número de indivíduos analisados ...................................................................................................................33
RESUMO

A remoção de flores e frutos durante a alimentação de herbívoros vertebrados pode alterar o balanço entre crescimento vegetativo e reprodução das plantas. No Cerrado, o fogo também atua nesse processo atraiendo herbívoros para áreas queimadas e influenciando a reprodução das plantas. O comportamento de forrageio de um herbívoro também pode influenciar no tamanho do efeito da herbivoria. Este trabalho visa analisar a influência do fogo e de herbívoros de médio e grande porte na reprodução de plantas herbáceas do Cerrado e analisar o comportamento do forrageio do veado-campeiro (*Ozotoceros bezoarticus*), herbívoro de maior porte mais comum no Parque Nacional das Emas (PNE). Este estudo é o primeiro a avaliar os efeitos da herbivoria de ungulados nativos na América do Sul, instalando parcelas de exclusão de herbívoros e estações de pegada e acompanhando o forrageio do veado-campeiro. Ao longo do estudo, as áreas de estudo de vegetação foram visitadas por herbívoros de médio e grande porte, porém não houve diferença de registros entre áreas queimadas e não queimadas. Duas espécies de plantas foram afetadas negativamente quanto à exclusão de herbívoros, *Campomanesia adamantium* e *Manihot tripartita*. O fogo mostrou influência positiva na produção de inflorescências e frutos de *Dimerostemna brasiliense* e *M. tripartita*, além de afetar o peso médio das sementes da primeira espécie. O forrageio do veado-campeiro variou em relação à quantidade de alimento existente na mancha. O veado-campeiro apresentou média de ingestão de 25,8% de todos os recursos de *M. tripartita* (botões, flores e frutos) ou 51,4% dos frutos, com raros eventos de depleção da mancha. A decisão em se alimentar ou não da mancha dependeu do número de frutos por planta. O gráfico de forrageio apresentou padrão similar à resposta funcional do tipo I. Essa resposta é incomum para herbívoros, mas pode estar associada ao pequeno tamanho do fruto e quantidade limitada por planta. O pequeno porte dos herbívoros, o seu comportamento de forrageio e a grande diversidade vegetal do Cerrado podem estar associados à baixa intensidade de herbivoria encontrada. O fogo parece ser um fator mais importante na dinâmica vegetal dessas espécies herbáceas do que a herbivoria.
ABSTRACT

Vertebrate herbivores feeding on flowers and fruits can alter the balance between vegetative growth and plant reproduction. In the Brazilian Cerrado, fire can act in this process attracting herbivores to burned areas and influencing plant reproduction. An herbivore’s foraging behavior may also influence on herbivory effect size. This work aims to analyze fire and herbivore’s influence in the Cerrado’s herbs reproduction and analyze the pampas deer (Ozotoceros bezoarticus) foraging behavior at the Emas National Park (ENP). To my knowledge, this is the first study about the effects of South American native ungulate herbivory. In order to study this, exclosures and track stations were installed and individuals of pampas deer were accompanied during its foraging. The studied areas were visited by medium and big sized herbivores, but no difference was found between burned and unburned areas. Two plant species were negatively affected by herbivory, Campomanesia adamantium and Manihot tripartita. Fire influenced positively on Dimerostemna brasilianum and M. tripartita bud and flower production. It also affected the seed average weight of the former species. Pampas deer foraging responded to food availability in the patches. The pampas deer ingested on average 25.8% of all M. tripartita resources (buds, flowers and fruits) and 51.4% of fruits only. Patch depletion was a rare event. The decision of foraging on the patch was strictly related to the number of fruits. Pampas deer foraging had pattern similar to the type I functional response. This is an uncommon response of an herbivore, but it may be associated, to the small size of the fruit and its limited quantity. The size of the Cerrado’s herbivores, its foraging behavior and the high vegetal diversity of Cerrado can be associated to the herbivory low intensity found in this work. Fire seems to be a more important factor in these herbs vegetal dynamics than herbivory.
INTRODUÇÃO GERAL

Ao pensar no efeito que um herbívoro de grande porte pode causar à vegetação local, um dos primeiros pensamentos que vêm à cabeça é o impacto dos elefantes nas savanas africanas ou a interação de herbívoros de grande porte com árvores de *Acacia*. Muitos estudos já foram feitos na África e América do Norte analisando o efeito da alimentação e pisoteio dos herbívoros nas paisagens, interações com plantas e até estudos comportamentais, porém na América do Sul há poucos estudos deste tipo (Paige 1999, Patten 1993, Royo *et al.* 2010, Spotswood *et al.* 2002, Tsumele *et al.* 2007).

O Cerrado também possui várias espécies de herbívoros de médio e grande porte. É possível citar a anta (*Tupirus terrestris*), como a de maior porte, seguida pelo cervo do pantanal (*Blastocerus dichotomus*) e outras espécies de veado, como por exemplo o veado-campeiro (*Ozotoceros bezoarticus*). Há também espécies não totalmente herbívoras, mas que incluem itens vegetais na sua dieta, como o lobo guará (*Chrysocyon brachyurus*). Apesar da presença de tantas espécies de herbívoros vertebrados, são poucos os estudos realizados no Cerrado relativos ao efeito deles sobre a vegetação. Os estudos são focados principalmente na biologia desses animais, como dieta, área de vida, estudos populacionais.

Os herbívoros de médio e grande porte do Cerrado não ocorrem na mesma densidade ou abundância que outros herbívoros vertebrados da África, por exemplo, mas em algumas situações eles podem se alimentar mais intensamente em alguma área, sendo possível que causem efeitos positivos ou negativos em algumas plantas. O fogo, que ocorre naturalmente e com freqüência em áreas de Cerrado, é um fator que pode concentrar herbívoros em algumas áreas por um período (Horsley *et al.* 2003, Prada *et al.* 2001, Wilsey 1996). Alguns pesquisadores relatam a concentração de herbívoros em áreas queimadas, principalmente o veado-campeiro, em busca dos brotos e flores que surgem logo após a passagem do fogo (Berndt 2005, Rodrigues & Monteiro-Filho 2000). É possível então que num cenário pós-fogo os herbívoros do Cerrado possam influenciar a ecologia de algumas espécies de plantas. E além de avaliar o efeito dos herbívoros sob a perspectiva das plantas, alimento dos herbívoros, é interessante também estudar o efeito da quantidade de alimento no comportamento de forrageio de um herbívoro, uma vez conhecida a sua dieta.

Este estudo irá abranger os efeitos citados acima em dois capítulos. O primeiro aborda a influência dos herbívoros na ecologia de algumas espécies herbáceas do Cerrado, incluindo
os efeitos do fogo e visitação por herbívoros. O segundo capítulo analisa o comportamento de forrageio do veado-campeiro em relação a manchas de flores do Cerrado.
CAPÍTULO I

Efeito do fogo e da herbivoria por grandes vertebrados na reprodução de espécies herbáceas no Cerrado

RESUMO

Herbívoros vertebrados, como o veado-campeiro, removem flores e frutos das plantas, podendo alterar o balanço entre crescimento vegetativo e reprodução. No Cerrado, o fogo é outro fator que influencia na reprodução das plantas, sincronizando a floração. O fogo também atrai herbívoros para áreas queimadas devido à floração e brotamento das plantas. Ao consumirem partes da plantas, os herbívoros podem afetar a aptidão das plantas levando a resposta de subcompensação, compensação ou sobrecompensação da herbivoria. Este trabalho visa avaliar a influência do fogo e de herbívoros de médio e grande porte na reprodução de plantas herbáceas no Cerrado do Parque Nacional das Emas (PNE). Este estudo é o primeiro a avaliar os efeitos da herbivoria de ungulados nativos na América do Sul. A metodologia de estudo incluiu a instalação de parcelas de exclusão de herbívoros em áreas de campo sujo queimadas e não queimadas do PNE. Estações de pegadas também foram instaladas ao redor das parcelas para avaliar a visitação das áreas por herbívoros de médio e grande porte. As áreas de estudo foram visitadas por herbívoros de médio e grande porte, porém não houve diferença de registros entre áreas queimadas e não queimadas. Os animais não se concentraram nas áreas queimadas provavelmente devido à grande extensão das áreas queimadas em 2010, 91% da área do parque. Duas espécies de plantas foram afetadas quanto à exclusão de herbívoros, Campomanesia adamantium e Manihot tripartita. A herbivoria parece ter exercido um papel negativo nessas espécies. A diminuição do número de frutos produzidos em C. adamantium pode comprometer a propagação de cada indivíduo e a diminuição do peso das sementes de M. tripartita pode afetar a germinabilidade destas e a sobrevivência de plântulas. Já o fogo mostrou influência positiva na produção de inflorescências e frutos de Dimerostemma brasilianum e M. tripartita, o que é um padrão comum observado para muitas espécies herbáceas e arbustivas em ambientes suscetíveis ao fogo. O fogo também afetou o peso médio das sementes de D. brasilianum, o que pode refletir estratégias de propagação distintas em áreas queimadas e não queimadas. A herbivoria no estrato herbáceo no Cerrado não foi intensa. O pequeno porte dos herbívoros e a grande diversidade vegetal do Cerrado pode estar associado à baixa intensidade de herbivoria. O
fogo parece ser um fator mais importante na dinâmica vegetal dessas espécies herbáceas do que a herbivoria. Apesar de o fogo ser considerado análogo à herbivoria, a resposta a ele foi a oposta para a encontrada para a herbivoria.
ABSTRACT

Vertebrate herbivores, such as the pampas deer, are known to feed on flowers and fruits affecting the balance between vegetative growth and plant reproduction. In the Brazilian Cerrado, fire is another factor that influences plant reproduction, it synchronizes the period of flowering. Herbivores, after consuming parts of the plant, can affect its fitness such as undercompensation, compensation and overcompensation. The goal of this study was to evaluate the influence of fire and big and medium body sized herbivores on the reproduction of Cerrado’s herbs at the Ema’s National Park (ENP). This is the first work, to my knowledge, to study the effects of south American ungulates. Herbivore exclosures were installed in burned and unburned areas of ENP. To assess the visitation of these areas by herbivores, track stations were also installed next to the exclosures. Herbivores visited the studied areas, but did not differ between burned and unburned areas. Probably, the animals did not concentrate on burned areas due to the big extension of the 2010 fire, that burned 91% of the area of ENP. Two plant species were affected by the herbivore exclusion, *Campomanesia adamantium* and *Manihot tripartita*. Apparently, the herbivory had a negative impact on these plants. The decrease in the number of fruits produced by *C. adamantium* can compromise individual propagation and the decrease in *M. tripartita* seeds’ weight can affect its germinability and seedlings’ survival. Fire influenced positively on the production of inflorescences and fruits of *Dimerostemna brasiliananum* and *M.tripatita*. Fire also affected *D. brasiliananum* medium seed weight, which could mean different propagation strategies in burned and unburned areas. Herbivory was not intense in the Cerrado herb layer. Small sized herbivores and the high plant diversity in Cerrado could be associated to the small herbivory intensity found in this study. Although fire is considered an analogous of herbivory, it caused an opposite effect to herbivory in this survey.
INTRODUÇÃO

A atividade de um indivíduo pode mudar o ambiente ao seu redor, alterando condições, adicionando ou subtraindo recursos. A herbivoria é um campo complexo de interações entre plantas e animais que pode influenciar as plantas de diferentes maneiras. Individualmente, as plantas podem ser afetadas no seu crescimento, aptidão e distribuição de indivíduos (Maron & Crone 2006). A nível de comunidade, a herbivoria pode alterar a composição, diversidade, estrutura e dinâmica das comunidades vegetais (Schulze et al. 2002).

A herbivoria é uma fonte de stress que, dependendo da sua intensidade, pode ser tolerado ou não pelas plantas (Schulze et al. 2002). Há três possibilidades de interações entre plantas e herbívoros (Tscharntke 1998): (1) Plantas não são comidas por serem resistentes, ou seja, possuírem defesa química e/ou física; (2) Plantas são herbivoradas por não serem resistentes; (3) Partes das plantas são ingeridas e essa perda é compensada mudando sua taxa de crescimento ou investimento na reprodução.

Plantas estão sujeitas a uma ampla gama de herbívoros, vertebrados e invertebrados. Nos trópicos, os insetos herbívoros são considerados os responsáveis pela maior parte da herbivoria em florestas e savanas tropicais. Há vários estudos avaliando o impacto de insetos herbívoros em florestas tropicais e savanas (Andersen & Lonsdale 1990, Coley & Barone 1996). Os mamíferos folívoros, como anta e veado, são considerados como menos danosos à vegetação nas florestas tropicais, pois grande parte da biomassa não está ao seu alcance (Coley & Barone 1996). Porém, Schulze et al. (2002) consideram que os grandes vertebrados são os herbívoros mais importantes, principalmente por serem os mais conhecidos, por exemplo os grandes herbívoros das savanas africanas. A questão de quem teria maior impacto na dinâmica populacional das plantas tem sido muito debatida. Muitos outros estudos com insetos e mamíferos foram feitos alegando maior importância a um a outro (ver Maron & Crone 2006), porém as conclusões de cada trabalho foram baseadas em diferentes parâmetros e estudos a nível de indivíduo. Em uma recente meta-análise desses trabalhos, Maron & Crone (2006) encontraram que, a nível de comunidade, herbívoros vertebrados e invertebrados afetam as plantas de maneira semelhante.

Os herbívoros vertebrados podem ser divididos em um continuum pastador- podador. Em um extremo estão os pastadores que são aqueles que se alimentam majoritariamente de
gramíneas e normalmente retiram quase toda a biomassa aérea da planta durante a sua alimentação. No outro extremo estão os podadores que se alimentam de folhas, flores e frutos das plantas, não ingerindo toda a biomassa aérea da planta. Ao longo do continuum existem espécies com alimentação mista, tendendo mais para o lado pastador ou podador (McNaughton & Georgiadis 1986).

A remoção ou destruição de flores e frutos imaturos por herbívoros folívoros pode alterar o balanço entre crescimento vegetativo e reprodução, aumentando ou diminuindo o tamanho dos frutos remanescentes, assim como o número de flores e frutos na próxima estação (Whitham et al. 1991). A maioria dos estudos avaliando os efeitos do consumo de inflorescências encontrou que a herbivoria levou a uma redução na produção de sementes ou não houve diferença significativa (Whitham et al. 1991). Recentemente muitos estudos confirmaram o efeito da compensação ou supercompensação da herbivoria em algumas espécies (Paige 1999, Tsumele et al. 2007, Yamauchi & Yamamura 2004), apesar de ser um tema muito controverso entre os cientistas (Belsky et al. 1993). Nesses casos a herbivoria em baixa intensidade estimulou a planta a produzir mais flores, frutos ou sementes, igualando ou aumentando em relação à produção sem a interferência da herbivoria.

A floração das espécies do Cerrado está comumente associada ao fogo. Várias espécies florescem no período pós-queimada, sendo o fogo considerado como um sincronizador da floração (França et al. 2007). Em um estudo fenológico em comunidade de campo sujo, Munhoz & Felfilli (2005) encontraram maior porcentagem de espécies do estrato herbáceo-subarbustivo florescendo após a passagem do fogo, quase o dobro da porcentagem do mesmo período do ano sem a influência do fogo. Esse efeito do fogo sobre a floração não é apenas imediato e se estende por algum tempo após o fogo. França et al. (2007) também observaram um maior número de morfo-espécies floridas nos períodos de 60, 90 e até 120 dias após a queimada.

O fogo influencia também a abundância local de herbívoros. Herbívoros vertebrados são comumente vistos em áreas queimadas em vários ecossistemas, como a savana africana, floresta boreal e Cerrado (Horsley et al. 2003, Prada et al. 2001, Wilsey 1996), cuja presença de herbívoros esteve associada a um aumento de plântulas e brotos. No Cerrado, a ecologia do veado-campeiro (*Ozotoceros bezoarticus*, Linnaeus 1758) é fortemente influenciada pelo fogo. Os animais são atraídos para áreas queimadas recentemente devido à indução de florescimento e brotação das plantas e à presença de cinzas, que são utilizadas para a...
aquisição de sais minerais (Rodrigues & Monteiro-Filho 2000). Áreas queimadas, então, dependendo da sua extensão, concentram herbívoros de médio e grande porte, o que pode levar a uma intensidade maior de herbivoria nessas áreas do que em áreas não queimadas.

Apesar de o fogo ser um distúrbio natural e importante no Cerrado, ele é considerado como uma das maiores ameaças ao bioma (Miranda et al. 2002). Incêndios de origem antrópica ocorrem principalmente durante a época de seca, quando a vegetação está seca e o fogo alastra rapidamente sem possível controle pelas chuvas. São os incêndios mais catastróficos, modificando a vegetação (Hoffmann & Moreira 1993) e causando grande impacto na fauna local (Silveira et al. 1996). As queimadas naturais são causadas por raios levando a um foco de incêndio que normalmente é rapidamente contido pelas chuvas, muito comuns na época úmida (França et al. 2007).

O Parque Nacional das Emas (PNE) é uma das mais importantes áreas conservadas de Cerrado do país (Redford 1984) e uma das poucas aonde o fogo natural é mantido como aspecto natural no seu plano de manejo. O parque possui uma extensa rede de aceiros que permite a ocorrência de queimadas naturais ao mesmo tempo em que evita o alastramento do fogo por todo o parque (Veiga et al. 2004). A cada ano são queimados em média de 10 e 30% da área do parque em queimadas naturais (França et al. 2007). Esse manejo do fogo cria então um mosaico de áreas, desde queimadas recentemente a não queimadas por vários anos. Além disso, o parque possui uma rica mastofauna, com 86 espécies de mamíferos, das quais o veado-campeiro é o mamífero mais visualizado e um dos símbolos da unidade de conservação. Outros herbívoros de médio e grande porte como emas, porcos do mato, outros cervídeos e antas também são encontrados no parque (Rodrigues et al. 2002).

Este trabalho visa avaliar a influência do fogo e de herbívoros de médio e grande porte na reprodução de plantas herbáceas no Cerrado do Parque Nacional das Emas. O objetivo do trabalho foi responder as seguintes perguntas: (1) Os herbívoros de médio e grande porte visitam mais as áreas queimadas? (2) Como a produção de botões florais, flores, frutos e sementes de espécies herbáceas varia em relação ao fogo e à herbivoria? Existem poucos estudos que avaliam a atração de herbívoros por áreas queimadas. Além disso, os estudos que avaliam a influência de herbívoros vertebrados nas comunidades vegetais estão concentrados nos ecossistemas africanos e norte-americanos (Paige 1999, Patten 1993, Royo et al. 2010, Spotswood et al. 2002, Tsumele et al. 2007). Esse é o primeiro estudo que aborda a influência
de herbívoros de médio e grande porte nativos da América do Sul e sua interação com o fogo na vegetação do Cerrado.

MATERIAL E MÉTODOS

Área de estudo

O Parque Nacional das Emas (PNE) localiza-se no sudoeste do estado de Goiás, na divisa com os estados de Mato Grosso e Mato Grosso do Sul, entre as latitudes 17°49’ e 18°28’S e 52°39’ e 53º10’W (Figura 1). O parque é uma das mais importantes áreas conservadas de Cerrado do país (Redford 1984), possuindo cerca de 133.000 hectares, e considerado Patrimônio Natural da Humanidade (França et al. 2007). O clima é tropical úmido com temperatura média anual de 24,6°C e pluviosidade de 1200 a 2000 mm anuais. O verão é úmido, com chuvas concentradas de Outubro a Março, e o inverno é seco com precipitação inferior a 60mm, o que junto com a grande ocorrência de tempestade de raios na região leva à ocorrência de incêndios naturais (França et al. 2007; Ramos-Neto & Pivello 2000).

É possível observar quase todas as fitofisionomias do Cerrado no PNE. As fitofisionomias abertas, campo limpo, campo sujo e campo cerrado, são as mais abundantes, ocorrendo em 68,1% da área. As áreas de cerrado stricto sensu cobrem aproximadamente 25,1% da reserva, e o restante é ocupado por campos úmidos, veredas de buritis, campos de murundus, floresta estacional e outras (Ramos-Neto & Pivello 2000, Figura 1).


O fogo é um fator importante no manejo do parque e, devido à grande ocorrência de incêndios, muitas vezes de origem antrópica, foi estabelecido a partir de 1981 um plano de manejo que previa o combate e prevenção do fogo com a implantação de uma extensa rede de
aceiros (França et al. 2007). Esse plano de manejo já foi revisto em 1991 e 2004 e a política de manejo dos aceiros continua a ser adotada como medida preventiva (Veiga et al. 2004). Os aceiros, que totalizam em 384 km, são faixas de vegetação que são queimadas anualmente durante a estação seca com o intuito de evitar que o fogo se espalhe por áreas muito grandes do parque. Esses aceiros levam à formação de um mosaico de áreas queimadas recentemente até áreas não queimadas há alguns anos. Os aceiros são também áreas de concentração de animais e herbívoros nos meses subsequentes ao fogo (França et al. 2007, Veiga et al. 2004).

Apesar da rede de aceiros, incêndios grandiosos ainda ocorrem no PNE. Em 12 de agosto de 2010 um incêndio antropogênico queimou em 3 dias 91% da área do parque (Figura 2). O último incêndio catastrófico havia ocorrido em 1994 (França 2010).

Figura 1: Localização e tipos de vegetação do Parque Nacional das Emas, Goiás, Brasil. Retirado de Becker et al. (2007).
Figura 2: Área queimada no incêndio de agosto de 2010 (91% da área total) no Parque Nacional das Emas, Goiás. Retirado de França et al. (2010).

**Delineamento amostral**

O estudo foi realizado em áreas de campo cerrado do Parque Nacional das Emas, entre outubro de 2010, período em que iniciaram as chuvas após o incêndio de agosto de 2010, e fevereiro de 2011. Para avaliar o efeito do fogo e o efeito dos herbívoros de médio e grande porte na reprodução de algumas espécies de plantas do cerrado construí parcelas para amostragem de vegetação, em locais que haviam sido queimados recentemente (dois meses) ou não queimados a mais de um ano.

Construí 40 parcelas de exclusão e o mesmo número de parcelas controle, sendo 20 pares (exclusão e controle) em áreas queimadas e 20 em áreas não queimadas. As parcelas de exclusão consistiram de quadrados de aproximadamente 9 x 9 m rodeado por uma cerca de 1,30 m de altura, que impedia o acesso dos herbívoros à vegetação do interior da parcela (Figura 3). A cerca foi construída com oito fios de arame liso, com os quatro primeiros
Figura 3: Exemplo de parcela de exclusão instalada em área recentemente queimada no Parque Nacional das Emas, Goiás.

Figura 4: Localização dos 4 locais utilizados para implantação das parcelas de vegetação com suas letras de identificação, no Parque Nacional das Emas. Círculos brancos representam áreas não queimadas amostradas, e os círculos pretos as áreas queimadas. A identificação das áreas foi feita de acordo com as marcações de encruzilhadas do PNE. Imagens retiradas do Google ©2009
arames perto do chão espaçados a 10 cm, para evitar a entrada de herbívoros menores, como queixadas, e os últimos espaçados a 20 cm. A parcela aberta (controle) era um quadrado do mesmo tamanho demarcado por postes. Devido à grande extensão da queimada de 2010 foi necessário dividir as parcelas de vegetação em quatro locais distintos: A, X, Z e G (Figura 4). Instalei a cada 200 m de área não queimada um par de parcelas de vegetação (exclusão e controle), totalizando cinco duplas por local, fazendo o mesmo para as áreas queimadas. Instalei no total 80 parcelas, sendo 40 de exclusão e 40 controle (abertas).

Entre o final de outubro e início de novembro, marquei nas parcelas todos os indivíduos floridos de sete espécies herbáceas (Figura 6): *Dimmerostema brasiliunum* (Asteraceae); *Viguiera grandiflora* (Asteraceae); *Anemopaegma glaucum* (Bignoniaceae); *Manihot tripartita* (Euphorbiaceae); *Bauhinia rufa* (Fabaceae); *Campomanesia adamantium* (Myrtaceae) e *Psidium cinereum* (Myrtaceae). Cada planta foi identificada com uma placa de alumínio numerada, totalizando 650 indivíduos marcados. A escolha das espécies foi feita de acordo com a disponibilidade de espécies já descritas na alimentação do veado-campeiro no PNE (Berndt 2005, Rodrigues 1996). Outras espécies, ainda não descritas na sua alimentação, foram incluídas por pertencerem à mesma família de uma espécie incluída na alimentação ou por serem abundantes nos locais de estudo e apresentarem flores grandes e conspícuas, o que poderia ser uma atração para um animal folívoros. Acompanhei a produção de botões, flores e frutos dos indivíduos marcados a cada 10 dias, durante o período que se estendeu de novembro de 2010 a fevereiro de 2011. Para *D. brasiliunum* e *V. grandiflora* foram contados o número de capítulos com botões e com frutos e para *M. tripartita* foram contados o número de inflorescências ainda em botões e o número de frutos. Para facilitar a discussão, capítulos e inflorescências serão tratados genericamente de flores no texto. Na primeira campanha também medi o tamanho de cada planta (altura e diâmetro maior da copa). Coletei de um a dois frutos maduros de cada indivíduo marcado e os congelei para posterior contagem e pesagem de sementes em laboratório.

Em laboratório, descongelei e separei os frutos por espécie. Apenas quatro das oito espécies monitoradas obtiveram um número de frutos coletados suficiente para as análises (*C. adamantium*, *D. brasiliunum*, *M. tripartita* e *V. grandiflora*). Abri os frutos e triei as sementes manualmente. Para a retirada da mucilagem, retirei as sementes de *C. adamantium* coloquei de molho por 48 horas em hidróxido de amônio (25%), lavando-as em água corrente.
e colocando-as para secar em papel toalha, segundo a metodologia de Carmona et al. (1994). Medi as sementes com auxílio de um paquímetro digital e as pesei em balança de precisão de 0,001 g. Para *C. adamantium* e *M. tripartita* contei o número de sementes por fruto, pesei e medi tamanho das sementes (comprimento e larguras menor e maior). Para *C. adamantium* contei também quantas sementes estavam mal-formadas, pois quase todos os frutos apresentaram sementes com uma largura muito pequena aparentando não serem viáveis. Para as sementes de *D. brasillianum* e *V. grandiflora*, não foi possível contar o total de sementes, portanto apenas pesei e medi o comprimento e as larguras. Essas espécies, por produzirem frutos do tipo áquênio, poderiam ter perdido sementes durante a coleta e assim o número de sementes contado em laboratório estaria sempre subamostrado.

Para avaliar a utilização das áreas por herbívoros de médio e grande porte instalei cinco estações de pegada ao redor de cada par de parcelas de vegetação (Figura 5), totalizando 00 estações nas áreas não queimadas e 100 nas áreas queimadas. Cada estação consistiu em uma área de 1x1 m, previamente limpa para a retirada da vegetação, escavada a 3cm de profundidade e preenchida com uma camada de areia de aproximadamente 3cm. Para aumentar a durabilidade das estações e evitar o crescimento de plântulas no seu interior, coloquei um pedaço de lona com furos para escoamento da água embaixo da areia. Em cada estação usei um punhado de sal grosso como isca (Pardini et al. 2006) para aumentar a chance de detecção. É pouco provável que as iscas possam superestimar os dados de visitação das áreas, pois atraem apenas animais que estão andando próximos à estação. Fiz uma campanha de quatro dias a cada mês de acompanhamento das parcelas de vegetação, de novembro de

![Figura 5: Posicionamento das estações de pegada (quadradados sombreados) ao redor das parcelas de exclusão (hachurada) e controle (pontos pretos) no Parque Nacional das Emas, Goiás. A figura não está em escala.](image-url)
2010 a fevereiro de 2011, vistoriando as estações de pegada uma vez por dia em busca de pegadas de animais. Quando encontradas, identifiquei as pegadas com auxílio de um guia de campo (Borges & Tomás 2008) e em casos duvidosos tirei fotos para confirmação em laboratório. Os registros de queixadas de queixadas (*Tayassu pecari*) foram feitos quando as parcelas eram encontradas revoltas e com a lona plástica mordida, na maioria das vezes. A cada vistoria a parcela era iscada novamente e a areia alisada para apagar as pegadas marcadas. Contabilizei apenas um registro por espécie a cada conjunto de cinco estações de pegada, como mostrado na Figura 5, para evitar pseudoreplicação.

**Análise de dados**

A produção de recursos reprodutivos (botões, flores, frutos e/ou sementes) para cada espécie ao longo do período de estudo foi analisada usando análises de covariância (ANCOVA) ou modelos lineares gerais (GLM), incluindo quando possível a exclusão de herbívoros e o fogo como fatores, o local de coleta como bloco e a medida de tamanho da planta (altura ou diâmetro maior) como covariáveis. Analisei para cada espécie primeiramente a possibilidade de usar as medidas de tamanho como covariáveis. Para isso fiz regressões lineares entre a covariável e o recurso a ser analisado e caso houvesse uma relação significativa fiz regressões entre a covariável escolhida e a variável dependente para cada grupo das variáveis independentes (fogo e exclusão). Quando as inclinações das retas dos grupos eram semelhantes, as covariáveis foram aceitas e procedi à análise de covariância. Nos outros casos procedi a modelos lineares gerais (GLM) e analisei a covariável em separado. Para todos os testes foram testados os pressupostos e foram feitas transformações, quando necessário. Quando os pressupostos dos modelos lineares não foram aceitos procedi realizando vários teste t, para variâncias homogêneas ou não, dependendo do caso.

As análises variaram de acordo com a espécie, avaliando a medida de reprodução considerada mais adequada, botões, flores e/ou frutos, chamados genericamente de recursos reprodutivos no texto. Para todas as espécies, exceto *Manihot tripartita*, usei o número máximo de recursos registrado produzido por cada indivíduo ao longo da amostragem, pois estas apresentaram apenas um pico de produção de flores e frutos. Como *M. tripartita* produziu recursos de maneira contínua durante o estudo, a sua produção foi analisada com análises de variância com medida repetida, usando a exclusão de herbívoros e o fogo como fatores e o número de recursos presentes em cada indivíduo a cada campanha como medida.
repetida. Para *Dimemrosetema brasiliunum* foi considerado a produção de capítulos. Para *Bauhinia rufa* foi considerada a soma do número de botões e flores encontrados em cada indivíduo em cada campanha como unidade amostral, pois muitas vezes não era possível contabilizar o total de flores produzidas por sua floração ocorrer entre as campanhas. Para *Manihot tripartita* considerei a produção de inflorescências, independente se as flores estavam abertas ou não. Para facilitar a discussão, flores, capítulos e inflorescências serão tratados genericamente de flores no texto. Para outras espécies, *Anemopaegma glaucum, Psidium cinereum* e *Campomanesia adamantium*, não foi possível avaliar o fator fogo pois os indivíduos só foram encontrados nas áreas queimadas ou não queimadas. Em quase todas as espécies não foi possível incluir o local de coleta, pois não havia repetições suficientes de grupos entre os fatores. Isso provavelmente deve-se ao fato dos dados terem sido coletados em campo e não ser possível muitas vezes fazer amostragem igual entre locais. Nesses casos em que não foi possível incluir o local na análise e a produção de recursos foi significativamente diferente para algum fator, fiz uma nova análise de variância para avaliar o efeito do local, aplicando um teste post-hoc (Tukey, para amostras iguais, ou unequal HSD, para amostras desiguais) caso fosse significativo. Nas análises das sementes produzidas escolhi a medida de tamanho que obteve um resultado mais significativo para apresentar os resultados, apesar de todas as medidas terem sido testadas.

O tamanho dos indivíduos de cada espécie foi avaliado também em relação à ocorrência do fogo. As espécies que ocorreram em áreas queimadas e não queimadas foram comparadas então usando um teste t. No caso de variâncias não homogêneas, procedi ao teste t para variâncias não homogêneas.

Para as análises dos registros de pegada totais e por espécie foram utilizados modelos lineares gerais (GLM) considerando o fogo como um fator e os locais como blocos e foram testados todos os pressupostos.

**RESULTADOS**

Foram marcados no total 35 indivíduos de *Anemopaegma glaucum*, 50 de *Bauhinia rufa*, 182 de *Campomanesia adamantium*, 146 de *Dimemrosetema brasiliunum*, 122 de *Manihot tripartita*, 29 de *Psidium cinereum* e 78 de *Viguiera sp*. Durante o estudo 60 indivíduos de diferentes espécies morreram ou não foram encontrados por muitas semanas devido à planta ter sido arrancada, quebrada ou então ter secado. Além disso, algumas plantas não produziram

A maioria das espécies estudadas apresentou uma correlação positiva entre as medidas de tamanho da planta (altura e/ou diâmetro da copa) com a produção de recursos. O efeito do fogo e da exclusão de parcelas foi evidenciado apenas para *C. adamantium, D. brasilianum, M. tripartita e V. grandiflora* (Tabela 3).

Quanto à exclusão dos herbívoros, apenas três espécies apresentaram diferenças significativas na produção de recursos. *Campomanesia adamantium* apresentou maior produção de flores e frutos nas parcelas de exclusão no local A, não apresentando diferenças no local Z (Tabela 4, Figura 7). Apesar de haver uma correlação entre o tamanho da planta e a produção de recursos, não houve diferença quanto ao tamanho das plantas entre parcelas controle e de exclusão no local A em altura (*t*=1,51; *gl*=91; *p*=0,13) e diâmetro (*t*=0,06; *gl*=91; *p*=0,94). O número de recursos encontrados nas plantas nas parcelas controle foi 16% menor para flores, e 28% menor para frutos. Esse número é referente ao total produzido menos a quantidade retirada pelos herbívoros. *D. brasilianum* foi marginalmente significativo para a exclusão quanto à produção de flores e frutos. *M. tripartita* apresentou sementes 25% em média mais pesadas na área de exclusão (Tabela 6). O fogo e o local de amostragem não influíram na variação do peso da semente.

Figura 7: Médias e intervalos de confiança (95%) da produção de recursos por *Campomanesia adamantium* com relação à passagem do fogo nas áreas de estudo: A- produção de flores (*F*1;175=4,20; *p*=0,04); B- produção de frutos (*F*1;175=8,61; *p*=0,003).
O fogo influenciou a produção de recursos de *D. brasilianum*, *M. tripartita* e *V. grandiflora*. Os indivíduos de *D. brasilianum* da área queimada apresentaram maior produção de botões e flores (12%), e maior produção de frutos (65%) (Tabela 3), porém as sementes foram maiores (com maior comprimento) e 57% mais pesadas nas áreas não queimadas, e não variou entre os locais amostrados.

*M. tripartita* apresentou também uma maior produção de botões e frutos (Tabela 3, Figura 8) nas áreas queimadas ao longo das campanhas. Nas primeiras campanhas não houve diferença na produção de recursos entre áreas queimadas e não queimadas. Ao longo das campanhas, a produção de recursos na área queimada aumentou até atingir um pico, enquanto na área não queimada permaneceu similar e razoavelmente constante. O pico de produção de botões ocorreu nas campanhas 5 e 6, que correspondem ao final do mês de dezembro, e um pico de produção de frutos ocorreu na campanha 7, que corresponde ao início do mês de janeiro. O tamanho da planta (diâmetro) mostrou-se positivamente correlacionado apenas à produção de frutos sendo pouco explicativo. A análise também mostrou uma diferença na produção de botões e frutos quanto ao local, porém ao fazer testes post-hoc as diferenças estavam em apenas algumas semanas e não em toda a produção, mostrando apenas uma assincronia, mas não uma diferença total com relação ao local.

*V. grandiflora* apresentou sementes com comprimento 23% maior em áreas queimadas (Tabela 7). O peso das sementes de *V. grandiflora* não variou entre tratamentos.

O fogo influenciou também no tamanho de algumas espécies (Tabela 1). *D. brasilianum* apresentou altura e diâmetros maiores nas áreas não queimadas. *B. rufa* e *V. grandiflora* não apresentaram diferenças de tamanho entre as áreas queimadas e não queimadas. *M. tripartita* apresentou plantas com maior altura na área não queimada logo após o fogo e no final do estudo o padrão se inverteu, sendo que apenas o diâmetro foi maior para as plantas das áreas queimadas.

As áreas de estudo foram frequentadas pelos seguintes herbívoros de médio e grande porte: veado-campeiro (*Ozotoceros bezoarticus*), cervo-do-pantanal (*Blastocerus dichotomus*), anta (*Tapirus terrestris*), ema (*Rhea americana*) e queixada (*Tayassu pecari*). Rastros de ema, de cervo do pantanal e de queixadas foram encontrados esporadicamente.
Tabela 1: Medidas de tamanho (cm) para cada espécie estudada nas áreas queimadas e não queimadas do Parque Nacional das Emas, Goiás.

<table>
<thead>
<tr>
<th>Espécie</th>
<th>Área queimada</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Médias</td>
<td>DP</td>
<td>n</td>
<td>Médias</td>
<td>DP</td>
<td>n</td>
<td>Valor t</td>
<td>GL</td>
</tr>
<tr>
<td>B. rufa</td>
<td>Altura*</td>
<td>70,62</td>
<td>14,02</td>
<td>69,14</td>
<td>43,6</td>
<td>14</td>
<td>0,124</td>
<td>14,08</td>
</tr>
<tr>
<td></td>
<td>Diâmetro</td>
<td>54,45</td>
<td>21,48</td>
<td>40,5</td>
<td>31,03</td>
<td>14</td>
<td>1,8</td>
<td>47</td>
</tr>
<tr>
<td>D. brasilianum</td>
<td>Altura*</td>
<td>21,64</td>
<td>4,76</td>
<td>29,5</td>
<td>8,32</td>
<td>53</td>
<td>6,3</td>
<td>73,7</td>
</tr>
<tr>
<td></td>
<td>Diâmetro</td>
<td>21,13</td>
<td>9,04</td>
<td>24,63</td>
<td>10,26</td>
<td>53</td>
<td>2,09</td>
<td>135</td>
</tr>
<tr>
<td>M. tripartita</td>
<td>Altura inicial</td>
<td>31,79</td>
<td>20,01</td>
<td>42,68</td>
<td>15,5</td>
<td>69</td>
<td>3,39</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>Diâmetro inicial</td>
<td>65,34</td>
<td>28,57</td>
<td>71,34</td>
<td>27,8</td>
<td>52</td>
<td>1,15</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>Altura final</td>
<td>58,53</td>
<td>12,66</td>
<td>57,11</td>
<td>14,95</td>
<td>59</td>
<td>0,52</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Diâmetro final</td>
<td>127,14</td>
<td>40,17</td>
<td>89,2</td>
<td>31,63</td>
<td>58</td>
<td>5,46</td>
<td>105</td>
</tr>
<tr>
<td>V. grandiflora</td>
<td>Altura</td>
<td>55,13</td>
<td>17,4</td>
<td>67,61</td>
<td>21,2</td>
<td>36</td>
<td>0,52</td>
<td>60</td>
</tr>
</tbody>
</table>

*Foi utilizado o valor do teste t para variâncias não homogêneas

Figura 8: Médias e intervalos de confiança (95%) da produção de recursos por Manihot tripartita com relação à passagem do fogo nas áreas de estudo: A- produção de botões (F_{11;704}=2,22; p=0,11); B- produção de frutos (F_{11;748}=2,58; p =0,003).

Foram encontradas também pegadas de cachorro do mato (Cerdocyon thous), lobo guará (Chrysocyon brachyurus), tamanduá bandeira (Myrmecophaga tridactyla), jaratataca
(Conepatus semistriatus), tatus (Dasypus sp. e Cabassous sp.) e de um felino de pequeno porte. A maioria das pegadas registradas foi de anta, veado-campeiro e lobo guará.

Apesar do grande esforço amostral, o número total de registros em cada área foi modesto (Tabela 2) e não variou entre locais queimados e não queimados (Figura 9, $F_{1;24}=1,87; p=0,26$). Os registros separados por espécie também não apresentaram diferenças significativas entre áreas queimadas e não queimadas para veado-campeiro ($F_{1;24}=0,75; p=0,11$), anta ($F_{1;24}=2,00; p=0,25$) e lobo guará ($F_{1;24}=0,08; p=0,78$). Os registros de lobo guará não foram incluídos nos registros totais de herbívoros devido ao lobo ser um animal com hábitos alimentares distintos, porém ele pode ser consumidor dos frutos de algumas espécies estudadas, como de C. adamantium e P. cinereum (Rodrigues et al. 2007).

Tabela 2: Número total dos registros de pegada dos herbívoros de médio e grande porte e separados de acordo com as espécies mais abundantes, veado-campeiro (O. bezoarticus), anta (T. terrestris) e lobo-guará (C. brachyurus)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total de pegadas</td>
<td>Q</td>
<td>4</td>
<td>3</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>NQ</td>
<td>14</td>
<td>9</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Ozotoceros bezoarticus</td>
<td>Q</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>NQ</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Tapirus terrestris</td>
<td>Q</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NQ</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Cryocyon brachyurus</td>
<td>Q</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>NQ</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Figura 9: Média dos registros totais de pegadas de herbívoros de médio de grande porte e intervalos de confiança nas áreas queimadas (Q) e não queimadas (Q) no Parque Nacional das Emas, Goiás, de novembro de 2010 a fevereiro de 2011.
Tabela 3: Produção de recursos reprodutivos por espécie vegetal em relação à exclusão de herbívoros, ocorrência do fogo e tamanho da planta no Parque Nacional das Emas, Goiás. Transf- Transformação utilizada; NQ- Não Queimado; Q- Queimado; Excl.- Exclusão; Loc.- Local; Cov.- covariável.; Alt- Altura média da planta; Diâm.- Diâmetro médio da copa do arbusto ou erva. Resultados significativos estão em negrito.

<table>
<thead>
<tr>
<th>Espécie</th>
<th>Recurso reprodutivo</th>
<th>Teste</th>
<th>Transf.</th>
<th>Controle</th>
<th>Exclusão</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NQ</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemopaegma glaucum</td>
<td>Flores</td>
<td>Testes t</td>
<td>Média</td>
<td>- 5,1</td>
<td>- 5,8</td>
<td>t 0,41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 4,7</td>
<td>- 5,1 gl</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 14</td>
<td>- 16 p</td>
<td>0,68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td>Frutos verdes</td>
<td>Testes t</td>
<td>Média</td>
<td>- 2,8</td>
<td>- 2,6</td>
<td>t 0,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 4,2</td>
<td>- 3,1 gl</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 14</td>
<td>- 16 p</td>
<td>0,87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,01</td>
</tr>
<tr>
<td>Bauhinia rufa</td>
<td>Botões e flores</td>
<td>GLM</td>
<td>Log</td>
<td>Média</td>
<td>25,8</td>
<td>9,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,5</td>
<td>18,8</td>
<td>4,72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9,6</td>
<td>7,0</td>
<td>3,73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>17</td>
<td>4,26</td>
</tr>
<tr>
<td></td>
<td>Frutos verdes</td>
<td>GLM</td>
<td>Log</td>
<td>Média</td>
<td>7,4</td>
<td>0,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,5</td>
<td>1,0</td>
<td>6,23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,2</td>
<td>1,6</td>
<td>3,23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>17</td>
<td>4,5</td>
</tr>
<tr>
<td>Dimerostemma</td>
<td>Capítulos com</td>
<td>ANCOVA</td>
<td>Log</td>
<td>Média</td>
<td>7,4</td>
<td>10,4</td>
</tr>
<tr>
<td>brasiliannum</td>
<td>botões ou flores</td>
<td></td>
<td></td>
<td>6,5</td>
<td>7,5</td>
<td>6,29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,1</td>
<td>0,8</td>
<td>2,34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>50</td>
<td>1,90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>&lt;0,001</td>
</tr>
<tr>
<td></td>
<td>Capítulos com</td>
<td>Testes t</td>
<td>Média</td>
<td>9,8</td>
<td>15,3</td>
<td>2,12</td>
</tr>
<tr>
<td></td>
<td>frutos</td>
<td></td>
<td></td>
<td>7,6</td>
<td>12,6</td>
<td>3,15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,7</td>
<td>1,2</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>50</td>
<td>1,90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,6</td>
<td>12,6</td>
<td>3,15</td>
</tr>
</tbody>
</table>

*Análise de variância feita à parte para avaliar o efeito do local e depois submetida a test post-hoc.
Continuação da Tabela 3:

<table>
<thead>
<tr>
<th>Espécie</th>
<th>Recurso reprodutivo</th>
<th>Teste</th>
<th>Transf.</th>
<th>Controle</th>
<th>Exclusão</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manihot tripartita</td>
<td>Inflorescências em botões/campanha</td>
<td>GLM medidas repetidas</td>
<td>Média</td>
<td>3,4</td>
<td>13,6</td>
<td>5,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLM medidas repetidas</td>
<td>EP</td>
<td>2,3</td>
<td>2,6</td>
<td>2,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n</td>
<td>23</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Frutos verdes/semana</td>
<td>GLM medidas repetidas</td>
<td>Média</td>
<td>1,2</td>
<td>4,3</td>
<td>1,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLM medidas repetidas</td>
<td>EP</td>
<td>0,9</td>
<td>1,0</td>
<td>0,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n</td>
<td>24</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>Psidium cinereum</td>
<td>Flores</td>
<td>GLM</td>
<td>Média</td>
<td>5,8</td>
<td>-</td>
<td>3,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLM</td>
<td>EP</td>
<td>1,7</td>
<td>-</td>
<td>3,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n</td>
<td>19</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Frutos verdes</td>
<td>GLM</td>
<td>Média</td>
<td>12,9</td>
<td>-</td>
<td>20,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLM</td>
<td>EP</td>
<td>2,9</td>
<td>-</td>
<td>5,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n</td>
<td>19</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Viguiera grandiflora</td>
<td>Flores</td>
<td>ANCOVA</td>
<td>Média</td>
<td>1,1</td>
<td>1,6</td>
<td>1,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ANCOVA</td>
<td>EP</td>
<td>0,3</td>
<td>0,3</td>
<td>0,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n</td>
<td>22</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Frutos</td>
<td>ANCOVA</td>
<td>Média</td>
<td>1,3</td>
<td>1,6</td>
<td>2,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ANCOVA</td>
<td>EP</td>
<td>0,5</td>
<td>0,6</td>
<td>0,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n</td>
<td>22</td>
<td>16</td>
<td>14</td>
</tr>
</tbody>
</table>

*Análise de variância feita à parte para avaliar o efeito do local e depois submetida a test post-hoc.
Tabela 4: Produção de recursos reprodutivos de *Campomanesia adamantium* em relação às parcelas de exclusão, ocorrência do fogo e tamanho da planta no Parque Nacional das Emas, Goiás. Transf- Transformação utilizada; Alt- Altura média da planta; Diâm.- Diâmetro médio da copa do arbusto.

<table>
<thead>
<tr>
<th>Espécie</th>
<th>Recurso reprodutivo</th>
<th>Teste</th>
<th>Transf.</th>
<th>Teste reprodutivo</th>
<th>Resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Campomanesia adamantium</em></td>
<td>Flores</td>
<td>GLM</td>
<td>Raiz quadrada</td>
<td>Média</td>
<td>17,9 10,0 21,2 6,1 F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G.L.</td>
<td>7,9 8,1 6,7 7,0 G.L.</td>
<td>1 p 0,72 0,02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td>39 37 54 49 p</td>
<td>0,04 R² &lt;0,001 0,030</td>
</tr>
<tr>
<td></td>
<td>Frutos verdes</td>
<td>GLM</td>
<td>Log</td>
<td>Média</td>
<td>28,5 23,4 39,1 6,6 F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G.L.</td>
<td>7,7 7,9 16,1 6,9 G.L.</td>
<td>1 p 0,006 &lt;0,001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td>39 37 54 49 p</td>
<td>0,003 R² 0,04 0,20</td>
</tr>
</tbody>
</table>

Tabela 5: Características das sementes de *Campomanesia adamantium* em relação aos tratamentos de exclusão no Parque Nacional das emas, Goiás.

<table>
<thead>
<tr>
<th>Medida</th>
<th>Teste</th>
<th>Transf.</th>
<th>Controle</th>
<th>Exclusão</th>
<th>Resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° sementes por fruto</td>
<td>GLM</td>
<td>-</td>
<td>Média</td>
<td>3,75 4,79 4,14 4,70 F</td>
<td>0,388 11,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EP</td>
<td>0,36 0,40 0,24 0,34 GL</td>
<td>1 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>16 13 35 18 p</td>
<td>0,65 0,19</td>
</tr>
<tr>
<td>% sementes mal formadas</td>
<td>GLM</td>
<td>-</td>
<td>Média</td>
<td>0,35 0,45 0,26 0,27 F</td>
<td>7,80 1,33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EP</td>
<td>0,06 0,07 0,04 0,06 GL</td>
<td>1 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>15 13 35 18 p</td>
<td>0,22 0,45</td>
</tr>
<tr>
<td>Largura menor</td>
<td>GLM</td>
<td>-</td>
<td>Média</td>
<td>1,13 1,14 1,46 1,30 F</td>
<td>8,78 0,82</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EP</td>
<td>0,11 0,12 0,07 0,10 GL</td>
<td>1 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>15 13 35 18 p</td>
<td>0,21 0,53</td>
</tr>
<tr>
<td>Peso médio</td>
<td>GLM</td>
<td>-</td>
<td>Média</td>
<td>0,009 0,010 0,015 0,013 F</td>
<td>7,61 0,01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EP</td>
<td>0,002 0,002 0,001 0,001 GL</td>
<td>1 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>16 12 35 18 p</td>
<td>0,22 0,95</td>
</tr>
</tbody>
</table>
Tabela 6: Características das sementes de *Dimmerostema brasillianum* em relação aos tratamentos de exclusão e fogo no Parque Nacional das emas, Goiás. “N” corresponde ao número de indivíduos analisados.

<table>
<thead>
<tr>
<th>Medida</th>
<th>Teste</th>
<th>Transf.</th>
<th>Controle</th>
<th>Exclusão</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>NQ</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Q</td>
<td>NQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Excl.</td>
<td>Fogo</td>
<td></td>
</tr>
<tr>
<td>Largura média</td>
<td>GLM</td>
<td>-</td>
<td>Média</td>
<td>1,78</td>
<td>1,41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EP</td>
<td>0,11</td>
<td>0,09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>16</td>
<td>23</td>
</tr>
<tr>
<td>Peso médio 10 sementes</td>
<td>GLM</td>
<td>log</td>
<td>Média</td>
<td>0,012</td>
<td>0,009</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EP</td>
<td>0,001</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>15</td>
<td>23</td>
</tr>
</tbody>
</table>

Tabela 7: Características das sementes de *Manihot tripartita* em relação aos tratamentos de exclusão e fogo no Parque Nacional das emas, Goiás. “N” corresponde ao número de indivíduos analisados.

<table>
<thead>
<tr>
<th>Medida</th>
<th>Teste</th>
<th>Transf.</th>
<th>Efeito</th>
<th>Controle</th>
<th>Exclusão</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Média</td>
<td>EP</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Largura menor</td>
<td>GLM</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Controle</td>
<td>NQ</td>
<td>3,78</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Q</td>
<td>3,93</td>
<td>0,09</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exclusão</td>
<td>NQ</td>
<td>3,94</td>
<td>0,19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Q</td>
<td>4,04</td>
<td>0,08</td>
<td>17</td>
</tr>
<tr>
<td>Nº sementes por fruto</td>
<td>Testes t</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Controle</td>
<td>NQ</td>
<td>2,75</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Q</td>
<td>4,04</td>
<td>0,08</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exclusão</td>
<td>NQ</td>
<td>2,43</td>
<td>0,72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Q</td>
<td>3</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>Peso médio 1 semente</td>
<td>Testes t</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Controle</td>
<td>NQ</td>
<td>0,09</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Q</td>
<td>0,11</td>
<td>0,03</td>
<td>30</td>
</tr>
</tbody>
</table>

Tabela 8: Características das sementes de *Viguiera grandiflora* em relação aos tratamentos de exclusão e fogo no Parque Nacional das emas, Goiás. “N” corresponde ao número de indivíduos analisados.

<table>
<thead>
<tr>
<th>Medida</th>
<th>Teste</th>
<th>Transf.</th>
<th>Efeito</th>
<th>Média</th>
<th>EP</th>
<th>N</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Comprimento médio          | Testes t | -       |        |        |       |   |            |
|                            |       |         |        |       |    |   |            |
|                            |       |         |        |       |    |   |            |
|                            |       |         |        |       |    |   |            |
| Peso médio 10 sementes     | GLM   | -       |        |        |       |   |            |
|                            |       |         |        |       |    |   |            |
|                            |       |         |        |       |    |   |            |
|                            |       |         |        |       |    |   |            |

33
DISCUSSÃO

Abundância de herbívoros

A abundância de herbívoros de médio e grande porte não variou entre as áreas queimadas e não queimadas. Apesar de o fogo ser um fator que induz a floração das plantas de algumas espécies do Cerrado (Miranda et al. 2002) e do grande número de brotos e plantas florescendo observado nas áreas queimadas (obs. pess.), os animais circularam sem diferença entre as áreas.

O número similar de registros entre áreas provavelmente foi devido à grande extensão da área queimadas em 2010, 91% da área do PNE (Pivello 2011). Prada et al. (2001), também não encontraram diferenças nos registros de herbívoros em uma reserva de Cerrado (Reserva Xavante do Rio das Mortes) que também havia sofrido grande porcentagem de queima (50%). No seu estudo os rastros de anta, cervo-do-pantanal (Blastocerus dichotomus) e veado-campeiro foram similares entre transectos de áreas queimadas e não queimadas, e o uso das áreas queimadas foi atribuído ao grande número de brotos e gramíneas.

Em estudos de abundância de ungulados em outros ecossistemas o fogo foi considerado uma influência forte, porém não foi encontrado estudo em que comparasse áreas desproporcionalmente queimadas como o que ocorreu no PNE. Na floresta boreal da Améric do Norte, Alces alces, Odocoileus virginianus, O. hemionus e Cervus elaphus foram mais abundantes em áreas florestais recém queimadas (0 a 10 anos) devido aos brotos das árvores, arbustos e gramíneas (Fisher & Wilkinson 2005). Na África as áreas queimadas também são utilizadas preferencialmente por ungulados e há até maior ganho de peso quando alimentados em áreas queimadas do que não queimadas (McNaughton & Georgiadis 1986). No Parque Nacional da Tanzânia observou-se que as espécies de pequeno tamanho corporal, as impalas e gazelas, foram mais observadas nas áreas queimadas, enquanto as espécies maiores (zebra e antílope) não mostraram preferência alguma (Wilsey 1996).

Os herbívoros, devido à sua fisiologia e alimento com baixo teor energético (McNaughton & Georgiadis 1986), estão em constante alimentação. Assim, os locais por onde transitam são também locais de alimentação. Registros de pegada indicam apenas a presença de um animal, não sendo possível confirmar o tempo de permanência no local ou a sua ausência. Neste estudo, os animais podem ter passado mais tempo nas áreas queimadas devido à abundância de alimento, porém continuaram a se deslocar por todo o parque,
incluindo as áreas não queimadas. As áreas não queimadas, apesar de não ter tantos brotos e flores, fornecem abrigo e outros recursos necessários para a sobrevivência dos animais, fazendo com que estas também sejam visitadas. A pressão de herbivoria pelo veado-campeiro, anta, ema e queixada provavelmente não foi maior nas áreas queimadas, pois mesmo que passassem mais tempo nessas áreas elas eram muito extensas, não concentrando herbívoros em nenhum dos locais estudados. Hobbs (1996) comenta que ungulados herbívoros se concentram em manchas recentemente queimadas, mas a extensão da queimada reduz a chance da herbivoria afetar as plantas.

**Efeito da exclusão dos herbívoros**

Esse estudo se baseou no pressuposto de que as variáveis que influenciaram a vegetação foram as mesmas nas parcelas de exclusão e controle, portanto qualquer diferença encontrada entre os tratamentos de exclusão seria devido à herbivoria por grandes animais. Apesar de não ter sido verificada diferença entre a abundância de herbívoros, foi possível verificar indícios de herbivoria na produção de recursos de *C. adamantium* e *M. tripartita*.

*C. adamantium* apresentou menor número de flores e frutos nas parcelas controle, o que indica consumo por herbívoros de médio e grande porte. Os animais podem ter ingerido todas as partes da planta diminuindo a produção de recursos, porém é provável que a florivoria tenha sido o principal tipo de herbivoria nessa espécie. Rodrigues (1996) documentou que o veado-campeiro tem preferência alimentar por folhas novas, flores e frutos em plantas do Cerrado, incluindo as desse gênero. Como as plantas já eram indivíduos adultos que apresentaram poucas vezes folhas novas e o veado-campeiro é um dos herbívoros mais abundantes no parque, é razoável pensar que a herbivoria nesta espécie tenha sido mais incidente nas flores. A florivoria pode afetar também a polinização e consequentemente afetar o sucesso reprodutivo da planta indiretamente (Krupnick *et al.* 1999, Poveda *et al.* 2005). No caso de *C. adamantium*, a menor quantidade de flores disponíveis para polinização reduziu a produção de frutos nas áreas expostas à herbivoria. Além do menor número de flores disponíveis, manchas de flores expostas à herbivoria podem ter recebido menos polinizadores do que manchas na parcela controle, como foi observado para manchas de *Isomeris arbórea* (Krupnick *et al.* 1999). A produção de frutos apresentou uma diferença mais marcante do que a produção de flores, pois além de ser afetada pela florivoria e polinização diferencial, também pode ter ocorrido frugivoria. Os frutos dessa espécie estão registrados na dieta do veado-campeiro (Rodrigues 1996) e na do lobo guará (Rodrigues *et al.* 2007), animal que foi
muito registrado no estudo. A herbivoria não alterou a produção de sementes o que indica que provavelmente não houve compensação da herbivoria nesse nível.

Essa diferença de produção de frutos e flores para *C. adamantium* ocorreu apenas no local A, área localizada no interior do parque. O outro local, Z, é próximo às plantações que fazem limite com o parque. Berndt (2005) descreveu que os veados-campeiros que vivem próximo à periferia do parque se alimentam de espécies agrícolas cultivadas no entorno, contribuindo com até 46,9% da dieta total. Assim, os indivíduos de *C. adamantium* da área Z devem ter sido menos consumidos do que os da área A, pois os animais que circulavam por ali estavam muitas vezes saciados e utilizavam a área mais como passagem. Assim, a herbivoria nos indivíduos da local Z deve ter sido menos intensa, não possibilitando encontrar diferenças como as encontradas na local A.

*M. tripartita* apresentou sementes com peso menor nas áreas expostas aos herbívoros, indicando que ocorreu herbivoria nas áreas controle. Esperava-se encontrar também uma diferença na produção de botões e frutos no tratamento de exclusão, uma vez ocorrida a herbivoria, o que não ocorreu. A herbivoria pode não ter sido percebida a nível numérico da produção recursos, pois essa espécie apresentou uma produção constante de botões e frutos durante todo o período de estudo (Figura 9). A retirada de uma flor pelo herbívoro pode ter estimulado o desenvolvimento de gemais laterais da planta, fazendo com que a planta compensasse a herbivoria sofrida, produzindo um número de botões florais semelhante entre os tratamentos de exclusão. Isso foi verificado para *Ipomopsis aggregata* (Paige 1992), na qual a remoção de uma inflorescência estimulou a produção de cinco outras novas. Apesar de haver compensação das partes perdidas, uma planta pode apresentar menor produção de sementes e com massa menor, como foi mostrado para *Heraclum lanatum* (Hendrix 1984). As plantas podem compensar a perda pela herbivoria de várias maneiras. Uma delas seria redistribuir os fotossintatos para a produção das partes perdidas, como botões florais e flores (Crawley 1997). O gasto energético extra, usado para a compensação de botões florais em *M. tripartita*, pode ter reduzido a disponibilidade de nutrientes destinados à produção de sementes, levando à produção de sementes menores quando expostas à herbivoria. Spotswood et al. (2002) também verificaram uma diminuição no peso das sementes de três espécies herbáceas e arbustivas em uma simulação de herbivoria de veados. A remoção de folhas aparentou diminuir o estoque de carbono disponível para alocação nas sementes, sendo que a
perda de meristemas foi mais relevante do que a perda de folhas no sucesso reprodutivo das plantas.

A herbivoria parece ter exercido então um papel negativo para as duas espécies citadas. Em *C. adamantium* a diminuição do número de frutos produzidos sem aumentar a produção de sementes pode comprometer a propagação de cada indivíduo devido ao menor número de sementes produzidas no total. Em *M. tripartita*, a diminuição do peso das sementes também pode ser visto como algo negativo, pois o menor peso das sementes pode afetar a germinabilidade destas e a sobrevivência das plântulas. Sementes de tamanhos diferentes provenientes da mesma planta podem apresentar diferenças na germinação. Há evidências para outras espécies de plantas que sementes menores podem ter menores taxas de germinação (Mölken et al. 2005) e/ou menor velocidade de emergência de plântulas (Nietsche et al. 2004). Além disso, diferenças no tempo de dispersão das sementes podem afetar a probabilidade de atingir locais seguros para germinação e alterar o recrutamento (Crawley 1997). Medidas apenas de número de frutos ou massa das sementes podem ser inadequadas então para avaliar realmente qual foi o impacto dos herbívoros na aptidão dessas espécies. É possível falar dos primeiros efeitos evidenciados após a herbivoria, porém são necessários testes de germinação para avaliar o efeito em longo prazo nas duas espécies.

*D. brasilianum* apresentou resultado marginalmente significativo para a exclusão, porém esse efeito não deve ser considerado, pois a proporção de áreas queimadas é muito maior na área controle do que na de exclusão. Esse resultado deve ser apenas um resquício do efeito do fogo apresentado mais a frente.

As outras espécies não apresentaram diferenças em relação à herbivoria. Das cinco espécies que não apresentaram diferenças com relação à herbivoria, apenas *D. brasilianum* não está descrita na dieta do veado-campeiro. Por ser uma Asteraceae e ter flores de cor e aspecto similar a outras espécies incluídas na dieta do veado campeiro, como *V. grandiflora*, é pouco provável que esteja dentre as espécies ingeridas pelos herbívoros do parque. É provável então que seja uma espécie não representativa nas dietas, uma vez que ainda não foi registrada, sofrendo pouca herbivoria. O mesmo pode ter ocorrido para as espécies estudadas que estão incluídas na dieta do veado-campeiro (*A. glaucum; B. rufa; P. cinereum* e *V. grandiflora*) segundo Rodrigues (1996).
É importante lembrar também que em áreas tropicais como o Cerrado a diversidade vegetal é muito alta (Myers et al. 2000), o que pode levar a dietas mais amplas dos herbívoros, como é o caso do veado-campeiro (Berndt 2005). Além disso, os herbívoros da América do Sul são de porte pequeno, possuem hábitos mais folívoros e são encontrados em grupos pequenos, como o veado-campeiro (Rodrigues 1996), o que diminui a quantidade de matéria vegetal ingerida por eles e o seu impacto sobre a vegetação. Na África, assim como no Cerrado, a diversidade vegetal é muito alta e os herbívoros possuem dietas generalistas (Ben-shahar 1991). Porém como andam em grupos de muitos animais e possuem porte muito maior do que os herbívoros encontrados no Cerrado, o efeito sobre as plantas e a paisagem é mais facilmente evidenciado. Assim é provável que muitas das espécies das quais os herbívoros se alimentam no Cerrado não sejam muito afetadas devido à intensidade da herbivoria ser baixa sobre uma única espécie e diluída entre várias das existentes.

O impacto da herbivoria na vegetação depende também da densidade de herbívoros e da abundância de alimento preferencial na vizinhança (Horsley et al. 2003). Esperava-se que o fogo aumentasse a densidade de herbívoros nos locais queimados devido à maior concentração de alimentos preferenciais, mas como a maior parte do Parque foi afetada pelo fogo, isso não ocorreu neste estudo, e é provável que tanto áreas queimadas quanto não queimadas estavam sujeitas à mesma densidade de herbívoros. Rodrigues & Monteiro-Filho (2000) estimaram a densidade de 1 veado-campeiro/km² para o Parque Nacional das Emas. Considerando que o veado-campeiro é o herbívoro mais abundante, seguido pelos queixadas (Silveira & Jácomo 2002), a abundância dos herbívoros de médio e grande porte no PNE (veados, antas, queixadas e emas) não deve então ultrapassar 4 indivíduos/km². Essa densidade foi considerada pouco impactante para um cervídeo, *Odocoileus virginianus*, na Pensilvânia. Só houve impactos negativos na vegetação florestal quando os veados se encontravam em densidades maiores do que 8 indivíduos/km² (Horsley et al. 2003). A densidade de herbívoros de médio e grande porte do Parque Nacional das Emas parece estar bem abaixo deste limite, o que justifica as poucas diferenças encontradas quanto à herbivoria em um cenário de não concentração de herbívoros. As duas espécies em que foi encontrado um efeito da presença do herbívoro devem ser preferenciais na dieta do veado-campeiro.
**Efeito do Fogo**

O fogo também afetou a produção de recursos de algumas espécies estudadas, aumentando a produção de flores e frutos nas áreas queimadas. O fogo pode estimular a produção de recursos nas plantas diretamente (devido à eliminação da parte aérea da planta e/ou adição química de nutrientes) ou indiretamente (aumento de nutrientes no solo, remoção de competidores, entre outros) (Tyler & Borchert 2002). A eliminação da parte aérea das plantas pela queimada por si só já pode estimular o florescimento em algumas espécies, possivelmente por estimular a produção de primórdios florais (Miranda *et al.* 2002). As cinzas podem contribuir para a adição de nutrientes superficiais no solo, pois são resultantes da queima dos nutrientes das partes vegetativas das plantas queimadas e de matéria orgânica morta, como restos de troncos e palha (Kauffman *et al.* 1994). Apesar de aumentar inicialmente a concentração de nutrientes nas camadas superficiais do solo, os nutrientes são rapidamente absorvidos pelas raízes mais superficiais. O fogo também aumenta o pH do solo devido ao aumento de íons básicos (Knicker 2007), altera o conteúdo de matéria orgânica (aumentando ou diminuindo) e as atividades microbianas do solo (Hart *et al.* 2005).

O padrão de produção de inflorescências e frutos de *M. tripartita* pode ser explicado melhor pela disponibilidade de nutrientes no solo após a passagem do fogo. Nas primeiras campanhas, os indivíduos de *M. tripartita* das áreas queimadas ainda possuíam menor altura (Tabela 1), o que significa que ainda estavam investindo na recuperação da parte vegetativa, e estavam produzindo um número de recursos similar ao das áreas não queimadas (Figura 8). Após algumas semanas a produção de recursos na área queimada superou à da área não queimada, o que pode ser devido a uma maior concentração de nutrientes no solo da primeira área. A produção de recursos permaneceu alta até atingir um pico, caiu e ainda permaneceu mais alta do que a produção da área não queimada. Essa queda logo após o pico pode significar uma queda brusca de algum nutriente disponível no solo. A indução térmica ou por fumaça também pode ter ocorrido, mas a ocorrência de um pico de produção indica que estes não sejam os principais motivos, uma vez que eles incidiram sobre os indivíduos apenas no momento da queimada, não variando ao longo do tempo. A pluviosidade também poderia ser um fator a considerar, porém como todas as plantas de áreas queimadas e não queimadas estavam em áreas muito próximas elas sofreram a mesma influência da chuva.

A concentração de nutrientes varia ao longo do tempo, antes e depois do fogo. Segundo um estudo de Kellman *et al.* (1985) há grandes fluxos de nutrientes na superfície do solo
(primeiros 10 cm) após o fogo que são rapidamente imobilizados, como por exemplo o fósforo (P) que é adsorvido pelo ferro (Fe) e alumínio (Al). E, após três semanas, a concentração de nutrientes começa a cair de forma gradual. Como esse estudo foi realizado em áreas da América Central com dominância de coníferas, a permanência dos nutrientes no solo do Cerrado pode ser diferente, talvez permanecendo mais tempo no solo. O conteúdo de nitrogênio do solo também pode aumentar após queimadas. Esse aumento se deve a um efeito direto do fogo, aumentando a concentração do elemento no solo, ou a um efeito indireto do aumento de bactérias fixadoras de nitrogênio, em resposta ao aumento da quantidade de nutrientes no solo (Hart et al. 2005).

O aumento da concentração de nutrientes no solo pós-fogo do Cerrado é variável entre áreas também, podendo ser apenas momentâneo ou mais longo. A concentração de nitrogênio no solo pós-fogo varia bastante em relação à vegetação queimada e pode permanecer alta durante até seis meses após o fogo (Romanya et al. 2001). Em um estudo feito comparando áreas de Cerrado que são queimadas a cada dois anos e áreas não queimadas há 18 anos, não foram encontradas diferenças com relação a pH, conteúdo de matéria orgânica, e concentrações de P, K, Ca, Mg e Al (Moreira 2000). Porém em um estudo feito no PNE, foram encontradas diferenças evidentes em áreas com distintos regimes de queima (Silva & Batalha 2008). Locais queimados anualmente apresentaram valores maiores de matéria orgânica, nitrogênio e argila, enquanto nos locais protegidos foi detectado um valor menor de pH e maior concentração de alumínio. Ou seja, solos em áreas queimadas são menos ácidos e com maior disponibilidade de nutrientes. É provável que nas áreas de campo cerrado do PNE, aonde foram instaladas as parcelas de vegetação do atual estudo, o efeito do fogo na concentração de nutrientes possa ser observado por pelo menos sete meses, que foi o período pós-fogo máximo acompanhado por esse estudo.

Além da *M. tripartita*, *D. brasillianum* também apresentou maior produção de recursos (capítulos com botões florais e com frutos) nas áreas queimadas. Além dos efeitos já citados anteriormente, a queima da vegetação é um fator muito relevante para essa diferença encontrada. Por ser uma espécie de porte muito pequeno (24 cm de altura em média), a remoção da vegetação de maior porte ao redor dos indivíduos pelo fogo pode ter aumentado a luminosidade incidente sobre cada indivíduo e consequentemente sua taxa fotossintética na área queimada, aumentando a produção de capítulos. Já foi verificado que a diminuição de sombra, remoção de dossel e serrapilheira aumentou a floração para algumas espécies (Tyler
& Borchert 2002). É provável que vários efeitos relacionados ao fogo, diretos ou indiretos, tenham atuado também nesse aumento de reprodução.


A produção de sementes para *D. brasillianum* não seguiu o mesmo padrão da produção de capítulos, pois foram produzidas sementes com uma média de peso maior nas áreas não queimadas. Muitas espécies de Asteraceae apresentam dimorfismo de sementes, produzindo sementes periféricas mais escuras e maiores, enquanto as sementes centrais são mais claras e leves (Mölken *et al.* 2005). Como os frutos são formados em capítulos, não foi possível coletar todas as sementes e contabilizar o total produzido. É possível que nas áreas queimadas os indivíduos tenham gasto os nutrientes disponíveis para produzir maior número de sementes centrais, que possuem peso menor. Já na área não queimada os indivíduos produziram mais sementes periféricas, que são as mais pesadas. Sementes maiores de Asteraceae apresentam maior taxa de germinação (Mölken *et al.* 2005). Essa observação se encaixa muito bem para o panorama de dispersão nos dois ambientes. No ambiente queimado, há muito solo exposto e várias espécies estão germinando. Espécies que germinem mais rápido podem ter vantagem competitiva, pois se germinarem mais lentamente do que outras podem ser sombreadas e não terminar a sua formação. Já no ambiente não queimado, o solo já está ocupado por diferentes espécies, o que significa maior competição por recursos. Assim, taxas de germinação mais altas devem ser mais vantajosas nesse ambiente pois permitem um maior número de plântulas emergidas, o que deve compensar a perdas devido à maior competição por recursos.

É importante lembrar que o aumento de floração e frutificação verificado neste estudo ocorreu logo após a queima. Um grande aumento de floração pode levar à diminuição de crescimento e reprodução nos anos seguintes. Tyler & Borchert (2002) verificaram que indivíduos que produziram maior número de flores em uma estação reprodutiva apresentaram taxas de crescimento menores na próxima estação do que plantas que produziram poucas flores. Além disso, plantas das áreas queimadas apresentaram taxas negativas de crescimento comparadas às das áreas não queimadas. Assim, *M. tripartita* e *D. brasillianum* aparentaram
ser beneficiadas logo após a passagem do fogo, porém são necessários mais estudos para ver qual seria a resposta desses mesmos indivíduos nas próximas estações reprodutivas.

O fogo também estimula a rebrota e pode aumentar a floração e frutificação devido ao maior número de ramos encontrado em indivíduos de área queimada (Brewer & Platt 1994, Hodgkinson 1998). Esse foi um fator que influenciou no tamanho das espécies estudadas (Tabela 1). Parti do pressuposto que os indivíduos da área não queimada provavelmente já existiam nessas áreas antes da ocorrência da queimada de 2010. Como o incêndio de 2010 queimou completamente a parte aérea das plantas herbáceas, cada indivíduo observado na área queimada teve apenas três meses para crescer e atingir um tamanho similar ao dos indivíduos da área não queimada. As espécies apresentaram resposta positiva ao fogo em relação à reprodução vegetativa, pois apresentaram tamanhos de indivíduos similares entre áreas ou então apresentaram diferenças mínimas. B. rufa e V. grandiflora apresentaram indivíduos com tamanhos similares entre áreas, o que indica um efeito positivo do fogo apenas na reprodução vegetativa, pois não apresentaram diferenças na produção de recursos. No caso de D. brasilianum os valores diferiram em poucos centímetros, indicando que estas também foram estimuladas pelo fogo, mas ainda estavam em crescimento. É provável que no meio do estudo as plantas já tivessem obtido um tamanho similar, porém só há medidas iniciais e finais para M. tripartita. No início do estudo os indivíduos ainda estavam se recuperando do fogo e apresentaram altura média menor do que os da área não queimada. Porém, no final do estudo é possível verificar que os indivíduos da área queimada atingem a mesma altura dos da área não queimada e apresentam um diâmetro muito maior. Esse aumento de diâmetro provavelmente corresponde a uma resposta vegetativa ao fogo de aumento do número de ramos. O fogo influenciou M. tripartita tanto na reprodução vegetativa como na sexual, pois como a produção de botões florais e frutos ocorre com maior frequência nas porções distais de cada ramo, o aumento do número de ramos deve ter influenciado no aumento da produção de recursos da espécie já mencionado anteriormente.

Anemopaegma glaucum foi encontrada apenas nas parcelas queimadas e deve ser uma espécie de resposta rápida ao fogo. Muitas espécies herbáceas são afetadas negativamente pela ausência de fogo devido às suas necessidades de maior luminosidade para crescimento e germinação das sementes (Bond & Keeley 2005). Assim é provável que o menor sombreamento nas áreas queimadas tenha levado ao encontro de um número maior de indivíduos dessa espécie nessas áreas. Além disso, Coutinho (1977) encontrou que o fogo
estimula a abertura dos frutos de *Anemopaegma arvensis*, favorecendo a dispersão das sementes nas áreas queimadas. *A. glaucum* produz frutos similares aos dessa espécie e sua dispersão deve ocorrer de forma similar.

*V. grandiflora* apresentou sementes com comprimento maior em áreas queimadas, porém essa diferença só ocorreu devido ao menor tamanho das sementes da área A na área não queimada. A maioria das plantas da área A estavam na mesma parcela (exclusão 1). O menor comprimento da semente das plantas dessa área pode estar relacionado a características do solo ou genéticas desses indivíduos, e não relacionados ao fato de ter sido queimada ou não.

*C. adamantium* e *P. cinereum*, foram encontradas apenas nas parcelas não queimadas, com apenas um registro de *C. adamantium* para a área queimada. As sementes de *C. adamantium* são muito sensíveis à mudanças de temperatura (Carmona *et al.* 1994). A passagem do fogo pode ter diminuído a germinabilidade das sementes de *C. adamantium* devido ao grande aumento de temperatura. As sementes de *C. adamantium* possuem também lenta germinação (Scalon *et al.* 2009). Como o estudo só avaliou as espécies floridas e iniciou apenas três meses após o fogo, é possível também que os indivíduos jovens dessas espécies ainda não tivessem chegado ao tamanho mínimo para o início da reprodução sexuada nas áreas queimadas. *P. cineureum* deve apresentar o mesmo padrão, pois pertence à mesma família.
CONSIDERAÇÕES FINAIS

O fogo não foi um fator que aumentou a incidência de herbivoria nas espécies deste estudo. Apesar de *M. tripartita* ter apresentado diferenças reprodutivas tanto para fogo como para herbivoria, a incidência da herbivoria não foi maior em áreas queimadas. A maioria das espécies estudadas apresentou resposta positiva ao fogo, seja esta por reprodução vegetativa ou sexual. E a herbivoria, evidenciada em apenas duas espécies, foi aparentemente negativa. Esse estudo não pode ser comparado com outros estudos clássicos de parcelas de exclusão, uma vez que a maioria destes é de longo prazo e compara diferenças em relação à cobertura vegetal e riqueza de espécies.

Apesar de não ter obtido dados de biomassa vegetal, este estudo mostra que a herbivoria por espécies de médio e grande porte não parece ser muito intensa no estrato herbáceo do Cerrado. Herbívoros, principalmente ungulados, são agentes importantes de mudança ambiental, criando heterogeneidade ambiental, acelerando processos sucessionais e controlando a mudança de estados em ecossistemas. Alguns ecossistemas são mais propensos a mostrar respostas de plantas à herbivoria simplesmente devido à história evolutiva das plantas e animais do local e características do solo (Hobbs, N Thompson 1996). Na Américo do Norte e África, vários estudos conduzidos já encontraram que ungulados influenciam muito na vegetação, seja aumentando sua produção após a primeira herbivoria, uma resposta chamada de super compensação, seja alterando a paisagem e/ou regimes de fogo (McNaughton *et al.* 1998, Paige 1992, Vinton *et al.* 1993).

No Cerrado, os herbívoros são de menor porte, majoritariamente folívoros e a intensidade da herbivoria parece ser baixa. Considerando estes aspectos, os herbívoros não devem ser grandes modificadores da paisagem como ocorre em outros locais. O fogo sim pode ser considerado um “herbívoro” do Cerrado, como dito por Bond & Keeley (2005). O fogo se alimenta de moléculas orgânicas complexas e as converte em produtos orgânicos e minerais, diferindo da herbivoria por animais por não ter nenhuma preferência de dieta, atingindo todas as plantas em seu alcance. E como neste estudo a maioria das plantas mostrou alguma reação ao fogo, enquanto apenas duas foram influenciadas pela herbivoria, o fogo realmente parece ser um fator mais importante na dinâmica vegetal dessas espécies herbáceas do que a herbivoria. Apesar de o fogo ser considerado análogo à herbivoria por Bond & Keeley, a resposta a ele foi a oposta para a encontrada para a herbivoria. É importante ressaltar que o fogo apresentou um efeito positivo pois ocorreu antes da época reprodutiva das
espécies estudadas. Caso o fogo tivesse ocorrido durante ou após a reprodução essas plantas poderiam ter sido influenciadas negativamente pelo fogo.

Um estudo em situações normais de queima do Cerrado também seria interessante. Queimadas naturais normalmente ocorrem em manchas pequenas e em diferentes espaços de tempo, concentrando herbívoros nessas áreas. A densidade de herbívoros nas manchas seria maior do que a encontrada neste estudo, levando a uma herbivoria mais intensa nas áreas queimadas. O efeito da herbivoria nas plantas então deveria ser mais pronunciado, evidenciando melhor as respostas de compensação, subcompensação ou sobrecompensação das plantas. *M. tripartita*, que apresentou produção diferente em condições de herbivoria habitual, poderia apresentar diferenças mais notáveis nessas condições.

Esse estudo é apenas uma avaliação inicial do efeito do fogo e herbivoria nessas espécies herbáceas. Para saber se a diminuição na produção de frutos ou alteração da massa das sementes dessas espécies é relevante para o recrutamento e sobrevivência das populações locais é necessário realizar estudos de viabilidade e germinação das sementes, acompanhar o crescimento das plântulas e reprodução dos novos indivíduos. Dados de biomassa acima e abaixo do solo também podem ser interessantes, revelando os padrões de forma mais clara. A resposta imediata, tanto ao fogo quanto à herbivoria, pode prejudicar também a planta nas suas reproduções posteriores, sendo importante acompanhar a fenologia dessas espécies em períodos posteriores ao fogo e herbivoria.
REFERÊNCIAS


CAPÍTULO II

Forrageio do veado-campeiro (*Ozotoceros bezoarticus*) em manchas de flores no Cerrado

RESUMO

A dieta de um animal e o comportamento de forrageio são aspectos fundamentais de seu nicho ecológico. Umas das teorias mais aceitas que explicam mudanças de dieta em relação à disponibilidade de alimento para herbívoros é a exploração de manchas de alimento. Este trabalho tem como objetivo avaliar o forrageio do veado-campeiro no Cerrado em relação ao consumo de alimentos em manchas de flores. Veados-campeiros machos foram acompanhados durante o forrageio no Parque Nacional das Emas após a ocorrência de um grande incêndio em 2010. Os veados-campeiros observados alimentaram-se de manchas de flores de pelo menos 14 espécies diferentes, porém a maior parte dos registros correspondeu a *Manihot tripartita*. O veado-campeiro apresentou média de ingestão de 25,8% de todos os recursos da planta (botões, flores e frutos) ou 51,4% dos frutos de *M. tripartita*, com raros eventos de depleção da mancha. A decisão em se alimentar ou não na mancha dependeu do número de frutos por mancha e parece estar relacionada também a uma rápida avaliação olfativa. A ingestão de recursos (número de mordidas por planta) está mais associada à quantidade de recursos do que ao tamanho da planta. O forrageio de recursos totais (número de mordida versus recursos disponíveis) apresentou correlação positiva, mas o forrageio focado apenas nos frutos foi mais representativo, apresentando resposta sempre crescente similar à resposta funcional do tipo I, rara para herbívoros. A presença de frutos parece ser então o fator principal de decisão do forrageio e da quantidade consumida.
ABSTRACT

Animal’s diet and foraging behaviour are fundamental aspects of its ecological niche. Exploring food in patches is one of the most accepted theories that explains changes in an herbivore’s diet in relation of food availability. The aim of this work was to evaluate the pampas deer foraging on flower patches in the Brazilian cerrado. Male pampas deers were followed during its foraging at the Emas National Park after the fire of 2010. The individuals observed fed on at least 14 different plant species, but the records of *Manihot tripartita* were the most common. The pampas deer ingested in average 25,8% of all plant resources (buds, flowers and fruits) or 51,4% of the fruits of *M. tripartita*, with rare events of depletion. The decision of feed or not feed in a patch was determined by the number of fruits per patch and it seem to be related also to an olfative evaluation. The number of bites per plant is more associated to the total resources quantity than to the plant size. The number of bites versus the resources available per patch had a positive correlation but it was the foraging focused only on the fruits presented that was more representative. It presented a growing pattern, similar to the functional response type I, rare in herbivore’s foraging. Fruit presence in the patch may be the main factor on the decision of foraging and the amount eaten.
INTRODUÇÃO

A dieta de um animal e o comportamento de forrageio são aspectos fundamentais de seu nicho ecológico. Numa visão mais abrangente, a dieta de um forrageador é o reflexo de competições e interações com outras espécies (Sih & Christensen 2001). O forrageio de um animal tem custos e benefícios e, teoricamente, os animais deveriam maximizar os benefícios líquidos (Stephens & Krebs 1986). Umas das teorias mais aceitas que explicam mudanças de dieta em relação à disponibilidade de alimento é a Teoria do Forrageio Ótimo.

A teoria do forrageio ótimo (Charnov 1976, MacArthur & Pianka 1966, Schoener 1971) tem a finalidade de prever a estratégia de busca de alimento que se espera sob a condição em estudo. Ela tem como pressupostos que o comportamento atual dos animais foi favorecido pela seleção natural, que a eficácia do forrageio está relacionada a uma alta taxa líquida de ingestão de energia e que os animais têm o seu comportamento ajustado ao seu ambiente. Muitos estudos apontam que o forrageio de herbívoros está mais próximo à exploração de manchas de alimento, onde os alimentos não estão dispersos no ambiente e sim concentrados em manchas (Astrom et al. 1990). Podadores, por exemplo, se alimentam principalmente de árvores ou arbustos, que se encaixam no conceito de mancha de alimento (Astrom et al. 1990).

O forrageio de um herbívoro em manchas pode ser estudado também sob a perspectiva da resposta funcional (Holling 1959), que descreve a variação da resposta de consumo de um predador individual em relação mudanças na densidade das presas. Vários estudos indicam que a taxa de ingestão de herbívoros é dependente da disponibilidade de alimento e que está em consonância com a resposta funcional do tipo II (Bergman et al. 2001, Spalinger et al. 1988, Wilmshurst et al. 1995). Recentemente, Beckerman (2005) propôs quatro novos modelos de resposta funcional, adicionando o efeito da densidade de recursos, chamada de adaptativa. Apesar de incluir mais um parâmetro no seu modelo, a resposta funcional adaptativa mais relacionada ao forrageio de herbívoros podadores apresenta um padrão gráfico similar à resposta funcional tipo II de Holling (1959).


O veado-campeiro (Ozotoceros bezoarticus; Linnaeus, 1758) é um cervídeo nativo da América do Sul cujos estudos em vida livre são possíveis devido aos animais serem de fácil visualização, por aceitarem o acompanhamento de um pesquisador e serem relativamente abundante em alguns poucos locais do Cerrado e no Pantanal.


Este trabalho tem como objetivo avaliar o forrageio do veado-campeiro no Cerrado em relação ao consumo de alimentos em manchas de flores. O objetivo do trabalho foi responder as seguintes perguntas: (1) O número de recursos na mancha influencia a decisão do animal de se alimentar? (2) Quais características da mancha (tamanho da planta ou número de
recursos disponíveis) influenciam mais na quantidade de recursos ingeridos? (3) A quantidade de recursos ingeridos numa mancha inicial influencia a quantidade ingerida na próxima mancha ou a distância percorrida até a próxima mancha? Este estudo é o primeiro a avaliar o comportamento de forragio de uma espécie de cervídeo sul-americana sob uma perspectiva mais energética do que descritiva de dieta.

MATERIAL E MÉTODOS

Área de estudo

O Parque Nacional das Emas (PNE) é uma das mais importantes áreas conservadas de Cerrado, com cerca de 133.000 hectares, sendo considerado também patrimônio natural da humanidade (França et al. 2007). O parque localiza-se no sudoeste do estado de Goiás, na divisa com os estados de Mato Grosso e Mato Grosso do Sul, entre as latitudes 17°49’ e 18°28’S e 52°39’ e 53°10’W. Grande parte da sua área é coberta por campo sujo, campos limpos e campos cerrados (68,1%) (Ramos-Neto & Pivello 2000). Abriga uma população considerável de veados campeiros (*Ozotoceros bezoarticus*), sendo este o mamífero mais visualizado no parque e um dos símbolos da unidade de conservação. A ecologia do veado-campeiro está intimamente ligada à ocorrência do fogo no Cerrado, devido à rebrota de plantas que servem como alimento nutritivo para esses animais (Rodrigues 1996). No PNE, a ocorrência de queimadas é um evento comum, e seu atual plano de manejo permite a ocorrência do fogo natural procedendo à sua supressão em casos específicos (França et al. 2007). Além disso, o parque possui uma rede extensa de estradas, facilitando o seu deslocamento no interior para a observação e estudo de animais (Figura 1).

Em 12 de agosto de 2010 um incêndio antropogênico queimou em três dias 91% da área do parque, restando poucas manchas não queimadas. Os incêndios catastróficos na área do PNE eram muito comuns até instalação de aceiros e sua manutenção periódica no período que antecede à seca (França et al. 2007). Esses aceiros permitem que algumas áreas do parque sejam queimadas e evitam o alastramento do fogo. O último incêndio catastrófico havia ocorrido em 1994 (França 2010).
**Delineamento amostral**

O estudo foi realizado em áreas de campo limpo e campo sujo no Parque Nacional das Emas entre novembro de 2010 a fevereiro de 2011. Para localizar os indivíduos a serem estudados, fiz 56 saídas nos períodos da manhã ou da tarde. As buscas foram feitas de veículo a partir das estradas existentes no interior do Parque Nacional das Emas a uma velocidade de 20 a 30 km/h, com dois observadores (sendo um o motorista) e com auxílio de um binóculo 10x50. A cada saída eram percorridos cerca de 40 quilômetros buscando veados-campeiros nas áreas laterais das estradas, preferencialmente em áreas de campo. Foram percorridos 2180 quilômetros no total durante o estudo. Em áreas de campo limpo foi possível encontrar animais que estavam até 300 metros de distância, porém em áreas de vegetação mais fechada a visualização era bem menor, chegando a menos de 5 metros e diminuindo a chance de detecção nesses locais.

O estudo restringiu-se aos machos adultos e sub-adultos de veado-campeiro. Tomei essa decisão após muitas tentativas frustradas de acompanhamento de fêmeas. As fêmeas, além de mais ariscas, muitas vezes estavam com filhotes, o que diminuía a chance de sucesso do acompanhamento do forrageio.

Durante as buscas em veículo, quando um veado macho era localizado, era marcado um ponto no aparelho de GPS no local da estrada aonde o animal foi visualizado e, a partir deste ponto, a aproximação era feita a pé por mim e outro observador. A aproximação era feita de forma lenta, sempre nos expondo visualmente ao animal e andando nas mesmas rotas. Quando os animais apresentavam sinais de alerta, como cauda levantada, parávamos a observação e fingíamos não estar interessados no animal. Isso significava olhar para outros lados, mudar um pouco a rota de acompanhamento e até fingir comer algumas plantas. A aproximação foi feita de acordo com a metodologia descrita por Lacerda (2008).

Ao chegar a cerca de 10 metros do animal eu iniciava a observação das plantas floridas das quais o indivíduo se alimentava. Considerei como planta florida desde um pequeno arbusto florido, ou com botões florais, até alguns indivíduos muito próximos uns dos outros aonde não era possível identificar de qual exatamente o veado havia se alimentado. Registrei comportamentos de alimentação na planta ou apenas exploração da planta em busca de botões, flores ou frutos, chamados de recursos alimentares ao longo do trabalho. Os frutos
são chamados também de recursos preferenciais pois, durante as observações, eles aparentaram ser os itens mais ingeridos.

Devido à dificuldade de visualização em vários pontos das estradas, os indivíduos estudados foram observados principalmente em dois locais (Figura 1). Os veados estudados não possuíam nenhum tipo de marcação ou dispositivo para sua localização e individualização. Apesar de não ser possível a identificação de indivíduos, é pouco provável que tenha coletado dados do mesmo animal mais de uma vez devido à grande população de veados do PNE.

A cada planta em que o animal parava, eu anotava o número de mordidas do animal, qual parte estava sendo ingerida (botões florais, flores e/ou frutos) e marcava a planta para medição posterior. A marcação consistiu em registrar um ponto com auxílio de um aparelho de GPS e colocar uma estaca com uma bandeira amarela numerada para facilitar o encontro visual após o acompanhamento. Foram medidas cerca de 15 plantas floridas para cada indivíduo de veado-campeiro acompanhado. Após a marcação dessas 15 plantas, eu retornava junto com o outro observador a cada uma delas com o auxílio do GPS e media o tamanho da planta (altura, diâmetro maior e menor) e contava o número de flores, botões e/ou frutos.

Figura 2: Pesquisadora acompanhando o forrageio de um indivíduo de veado-campeiro (*Ozotoceros bezoarticus*) em área de campo sujo no Parque Nacional das Emas, Goiás.
restantes. Cada espécie vegetal foi coletada e levada ao herbário da UFMG para identificação correta.

O tamanho das plantas foi calculado posteriormente levando em consideração o formato em 3D da planta, semelhante a um cone invertido. Assim calculei o tamanho da planta usando a fórmula \( V = \pi \cdot a \cdot b \cdot h / 3 \), sendo \( a \) = metade do diâmetro maior, \( b \) = metade do diâmetro menor e \( h \) = altura. As distâncias percorridas entre plantas foram medidas de maneira indireta usando o programa GPS trackmaker. Os pontos das plantas em sequências foram ligados em linhas retas e foi calculado o comprimento de cada trecho em metros. O número de recursos alimentares total foi calculado somando-se o número de mordidas aos recursos encontrados na planta após o forrageio. O total de frutos presente na planta antes do forrageio também foi calculado de maneira semelhante, somando o número de mordidas ao número de frutos restantes na planta.

**Análise de dados**

O trabalho foi proposto para qualquer planta florida em que o animal se alimentasse, porém como 86% dos registros de forrageio se restringiram à espécie *M. tripartita*, as análises foram feitas apenas com essa espécie.

Primeiramente fiz uma análise de auto-correlação dos dados de cada forrageamento, para saber se a quantidade de mordidas na primeira planta estava correlacionada à próxima planta, como ferramenta para decidir se os dados de cada indivíduo poderiam ser analisados de maneira conjunta. Foram feitas também análises descritivas para determinar a quantidade mínima, máxima e média recursos ingeridos durante o forrageio. Os dados de cada indivíduo foram analisados de maneira conjunta.

Para avaliar se a quantidade de recursos ou tamanho da planta influenciaram a decisão do animal em se alimentar ou não fiz um teste t para variâncias não homogêneas.

Com relação à resposta de alimentação, primeiramente foram feitas correlações de Spearman para avaliar quais variáveis estavam correlacionadas com o número de mordidas e, posteriormente, as variáveis mais correlacionadas foram submetidas a regressões. Como os dados são provenientes de vários indivíduos distintos há muito ruído, o que inviabilizou o uso de regressões lineares pois nenhuma transformação levou ao aceite dos pressupostos. Escolhi então regressões não lineares com ajuste lowess, com tensão=0,5. A influência dos outliers
nas regressões foi avaliada e decidiu-se usar as regressões com todos os dados devido à pouca diferença. Para essas análises os eventos de não alimentação foram excluídos. A análise da porcentagem de ingestão de recursos seguiu os mesmos passos das análises anteriores.

As medidas de distâncias foram plotadas junto com a quantidade de recursos ingeridos em cada planta, transformadas logaritmicamente para atender aos pressupostos e analisadas com regressão linear.

**RESULTADOS**

Das 56 saídas realizadas, foram encontrados indivíduos de veado-campeiro em 68 ocasiões, mas só foi possível coletar dados de 20 indivíduos. Na maioria das vezes os indivíduos fugiam para fora do campo de visão antes de se conseguir uma aproximação. Além da fuga, muitas vezes os animais acompanhados não se alimentaram, ficaram descansando, interagindo com outros indivíduos do grupo ou cortejando a fêmea. Em outras vezes animais se alimentaram, porém não houve registro de forrageio em manchas de flores, provavelmente devido à escassez de plantas floridas no local de observação.


Durante o forrageio, os indivíduos de veado-campeiro foram acompanhados durante deslocamento até parar em uma mancha de alimento. Ao parar em uma mancha de *M. tripartita* o animal primeiramente farejava a mancha, encontrava um fruto e/ou inflorescência, se alimentava destes e continuava a fazer os movimentos com o focinho ingerindo outros frutos ou inflorescências até abandonar a mancha. Em algumas ocasiões, após farejar a planta, o veado deixava a mancha sem se alimentar. A cada mordida o veado provavelmente ingeria apenas um botão ou fruto, pois não havia muitos frutos e botões muito próximos. Em poucos
casos o animal deve ter se alimentado de um ou mais itens. Não observei o veado ingerindo folhas desta espécie.

*M. tripartita* é um arbusto de altura média de 55 cm e que possui látex. Suas inflorescências de botões são esverdeadas, as flores são brancas e frutos são verdes enquanto imaturos, de cor semelhante ao caule e folha. A inflorescência de botões possui um formato cônico com comprimento médio de 1,8 cm e o fruto assemelha-se a uma esfera com 1,3 cm de comprimento médio e 1,2 cm de largura média. O fruto torna-se seco quando maduro, passa a ter uma coloração amarronzada e as sementes são dispersas por balística.

Foram realizadas auto-correlações entre o número de itens ingeridos na mancha inicial e nas manchas seguintes para doze indivíduos de veado-campeiro apenas, que foram os acompanhamentos que apresentaram sete ou mais eventos de forrageio em *M. tripartita*. Todas as auto-correlações mostraram valores baixos, menores do que 0,5%. Além disso, o número de itens ingeridos em uma mancha inicial não influenciou o deslocamento do veado-campeiro em relação à próxima planta da mesma espécie (p=0,12; R²=0,017).

Figura 3: Indivíduo de *Manihot tripartita* e os seus recursos (círculos brancos) utilizados pelo veado-campeiro durante o seu forrageio: inflorescência de botões e fruto.

O veado-campeiro ingeriu de 0 a 100% dos recursos alimentares presentes nas manchas de flores, com uma média de ingestão de 25,8% de todos os recursos ou 51,4% dos frutos. Foram raros os eventos de depleção total da mancha.
A quantidade de recursos influenciou a decisão do veado em se alimentar ou não na mancha, porém ao analisarmos apenas os recursos preferenciais, os frutos, a diferença é mais notável (Figura 4).

Figura 4: Médias e intervalos de confiança (95%) da quantidade total de recursos \( t=3,06; \, gl=53,26; \, p=0,003 \) e da quantidade de frutos por planta e número de plantas avaliadas \( n \) em relação às decisões de forrageio do veado-campeiro.

Apenas o número total de recursos e o número de recursos preferenciais apresentaram correlações consideráveis ao número de mordidas \( r=0,46 \) e \( r=0,65 \), respectivamente, enquanto o tamanho da planta foi pouco correlacionado ao forrageio \( r=0,22 \).

O número de mordidas não se correlacionou com o tamanho da planta \( r=0,18; \, r=0,01 \). O número de mordidas foi correlacionado positivamente ao número de recursos \( r=0,36; \, \) Figura 5) e recursos preferenciais \( r=0,75; \) Figura 6)

Figura 4), sendo a última regressão mais explicativa do que a primeira.

Ao analisar a porcentagem de itens ingeridos em relação à quantidade de recursos disponível, vê-se que a há uma clara diminuição da porcentagem ingerida quando comparada ao total de recursos disponíveis (Figura 7). Já em comparação ao número de recursos preferenciais não há uma tendência de declínio nem aumento de ingestão (Figura 8).
Figura 5: Padrão de forrageio do veado-campeiro em relação ao número total de recursos presente em manchas de *M. tripartita* (*y = 2,166+0.075*x*; *r*=0,36, *p*<0,001) no Parque Nacional das Emas, Goiás.

Figura 6: Padrão de forrageio do veado-campeiro em relação ao número de recursos preferenciais (frutos) presente em manchas de *M. tripartita* (*y = 0,295+0.456*x*; *r*=0,75; *p*<0,001) no Parque Nacional das Emas, Goiás.
Figura 7: Proporção de ingestão de recursos pelo veado-campeiro em relação ao total existente em manchas de *M. tripartita* (*y* = 0,41-0,006*x*; *r* = -0,42; *p*<0,001) no Parque Nacional das Emas, Goiás.

Figura 8: Proporção de ingestão de recursos pelo veado-campeiro em relação aos recursos preferenciais existentes em manchas de *M. tripartita* no Parque Nacional das Emas, Goiás.
DISCUSSÃO

O acompanhamento de indivíduos selvagens para observação de comportamentos não é uma tarefa fácil. Os veados-campeiros são animais considerados de fácil acompanhamento, desde que seguidos alguns passos para sua habituação com o pesquisador (Lacerda 2008). No caso de estudos com indivíduos marcados, após alguns acompanhamentos os indivíduos se acostumam com a presença do pesquisador, diminuindo o tempo de aproximação e tentativas de fuga. Neste estudo os indivíduos acompanhados eram encontrados por acaso e, provavelmente, não estavam acostumados à minha presença e do outro observador. Além disso, as buscas por veado-campeiro ocorriam em intervalos de sete a dez dias, período que Lacerda (2008) considera grande, pois os indivíduos voltam a ser mais ariscos e necessitam de um maior tempo de habituação com o pesquisador. Berndt (2005), que também estudou veados-campeiros no Parque Nacional das Emas, relata que muitas vezes os animais não permitiram a aproximação humana, mostrando-se muito arredios.


Comparado aos outros estudos de dieta do veado-campeiro, o número de espécies registradas neste estudo foi bem baixo. Esse pequeno número provavelmente pode ser devido ao foco deste estudo ser mais comportamental ou estar relacionado ao consumo recorrente de uma mesma espécie de planta, Manihot tripartita. Como o estudo foi conduzido ao longo de três meses, poucas seriam as espécies que estariam florescendo e/ou frutificando ao longo dos meses. M. tripartita estava presente em quase todos os locais de observação de alimentação, além de ser uma espécie que produziu um número grande de inflorescências e frutos por indivíduo, e teve floração contínua durante os meses de estudo (Capítulo I).
O incêndio que queimou quase toda a área do PNE também pode ser um fator que influenciou a distribuição de espécies no ambiente e, conseqüentemente, a escolha de alimento pelo veado-campeiro. O fogo, além de sincronizar a floração de muitas espécies, pode também estimular termicamente a produção de flores e frutos (França et al. 2007, Tyler & Borchert 2002). Segundo Lacerda (2008), a floração e frutificação de espécies são importantes para a composição da dieta do veado-campeiro. *M. tripartita* aparenta ser então uma espécie importante na dieta do veado no período de estudo.

O comportamento do veado-campeiro descrito de busca de alimento indica a utilização da visão e/ou o olfato para localização dos itens desejáveis dentro da manchas de alimento. Rodrigues e Monteiro-Filho (1999) descreveram o mesmo comportamento durante os seus estudos, classificando o veado-campeiro como um podador seletivo e chamando a atenção para o formato afilado do focinho do veado, característico de animais que selecionam o alimento (Gordon & Illius 1988). O olfato, assim como a audição, é um sentido muito apurado em cervídeos (Muller-Schwarze 1994). Como os frutos e inflorescências de *M. tripartita* não possuem coloração conspícuca, é provável que o olfato tenha sido a ferramenta mais utilizada na busca dentro da mancha.

Em um estudo realizado com impalas (*Aepyceros melampus*), podem ser interpretadas taxas de remoção de biomassa que variaram de 2 a 40% (Fritz & Garine-Wichatitsky 1996). Impalas solitárias apresentaram as menores taxas de remoção, enquanto para indivíduos em grupos maiores a taxa de remoção chegou a até 40%. A porcentagem de remoção dos recursos totais pelo veado-campeiro encontrada neste estudo é semelhante à taxa de remoção de biomassa dos impalas solitários (25,8%).

Os veados acompanhados neste estudo estavam na maioria das vezes em grupos pequenos, de dois a três indivíduos, mas durante o acompanhamento do forrageio apenas um animal estava mais próximo do pesquisador, enquanto os outros permaneciam mais distantes. Herbívoros balanceiam entre os benefícios energéticos da alimentação e o custo da predação enquanto forrageiam (Brown 1988). Apesar dos herbívoros poderem vigiar enquanto estão processando o alimento, o que teria um custo energético zero (Fortin et al. 2011), indivíduos solitários ainda necessitam de mais tempo para vigiar do que indivíduos em um grupo. Em decorrência disto, indivíduos solitários poderiam ter que diminuir o seu tempo de forrageio e a taxa de remoção de alimento, para aumentar o tempo de vigilância. Como no PNE estão presentes os predadores do veado-campeiro, como a onça-pintada (*Panthera onca*), a onça-
parda (*Puma concolor*) e o lobo-guará (*Chrysocyon brachyurus*) (Rodrigues *et al.* 2002), a vigilância é necessária neste ambiente. É provável que veados-campeiros, na presença de mais indivíduos no grupo, consumam mais itens alimentares por mancha do que o encontrado neste estudo.

O uso ótimo de itens discretos (como inflorescências e frutos) por podadores é determinado por três tipos de decisões: começar ou não a se alimentar de uma planta; quando parar de se alimentar da planta; e que direção tomar para se alimentar da próxima planta (Owen-Smith & Novellie 1982). A decisão do veado-campeiro em se alimentar ou não de um indivíduo de *M. tripartita* parece estar associada a uma rápida avaliação olfativa e ao número de recursos presentes na planta (Figura ). Plantas forrageadas apresentaram uma diferença significativa quanto ao número total de recursos em comparação às não forrageadas, porém a diferença foi mais evidente ao se analisar somente a quantidade de frutos por planta. Apesar do veado-campeiro se alimentar tanto de inflorescências como frutos, os frutos parecem ser o item determinante na decisão de se alimentar da planta.

A preferência por frutos pode estar relacionada ao princípio da perda de oportunidade (Stephens & Krebs 1986). Quando um item é da melhor qualidade, o animal não perde a oportunidade em comê-lo, mas se o item é de qualidade inferior, o animal pode deixar passar a oportunidade com o intuito de encontrar itens mais proveitosos à frente. De acordo com esse princípio os frutos de *M. tripartita* seriam os itens de melhor qualidade e as inflorescências os itens de menor qualidade. A alta porcentagem de consumo de frutos (51,4%) é um indício que esses frutos seriam itens mais nutritivos, energéticos e/ou palatáveis. Caso uma planta possuísse apenas inflorescências o veado poderia abandonar a mancha com um número razoável de recursos sem se alimentar, pois estaria perdendo apenas itens de baixa qualidade. Com relação aos frutos o veado apenas abandonou a mancha quando não havia frutos ou havia poucos que passaram despercebidos por ele na avaliação visual/olfativa.

Ao analisar a ingestão de recursos durante o forrageio do veado-campeiro o número de mordidas por planta esteve mais associado aos recursos do que ao tamanho da planta (Figuras 5 e 6). O tamanho da planta poderia ser uma informação visual que atrai o animal até a mancha em questão, porém não há uma correlação forte entre o número de mordidas e o tamanho e tampouco uma relação ecologicamente explicável significativa. Apesar dos indivíduos de *M. tripartita* estarem em floração e frutificação constante no período de estudo,
indivíduos com tamanhos semelhantes podem apresentar quantidade de recursos bem distintos (observação pessoal).

O forrageio, quando comparado à quantidade de recursos total, não apresentou nenhum padrão, pois o número de mordidas aumenta inicialmente com o número de recursos, atinge um platô de ingestão entre 40 e 60 recursos mas depois a ingestão cai a proporções similares quando há poucos recursos.

Ao comparar o número de mordidas somente ao número de frutos por planta encontrei um ajuste melhor (Figura 6). No gráfico, a ingestão oscila positiva e negativamente em relação ao número de frutos, mas a partir da quantidade de 10 frutos por planta o gráfico apresenta uma relação linear que se assemelha à resposta funcional do tipo I (Holling 1959). Quanto mais frutos disponíveis na planta, mais frutos eram ingeridos. A equação fornecida pelo ajuste é linear e possui um intercepto positivo muito próximo ao zero, o que é consistente com a realidade biológica do forrageio, ou seja, quando há zero recursos não há ingestão.


A resposta funcional do tipo I encontrada para o forrageio do veado-campeiro deve estar mais relacionada à limitação de alimentos preferenciais do que o processamento do alimento. Como os frutos são recursos pequenos e provavelmente de fácil processamento, a proporção de ingestão não chega a um platô porque não há uma quantidade de frutos que leve a uma estagnação do consumo do veado. Mas ao contrário dos outros estudos (Batzli et al. 1981; White et al. 1981), esse estudo não foi feito em ecossistemas pobres em recursos. O pós-fogo no Cerrado é um ambiente rico em alimentos para o veado-campeiro (Rodrigues 1996). Outro fator que poderia influenciar no aparecimento de uma assíntota na resposta
funcional é a modificação do tamanho da mordida (Spalinger, D E & Hobbs, N T 1992). No caso do forrageio de frutos de *M. tripartita* os frutos são sempre pequenos e de tamanho similares, não sendo necessário o veado alterar o seu tamanho de mordida.

As figuras 7 e 8 mostram a resposta do forrageador de uma outra perspectiva. A proporção de ingestão de recursos totais (Figura 7) é maior em plantas com menos recursos e depois começa a diminuir. É possível pensar que quanto mais alimento, menor proporção o veado consumiria. Porém como o consumo de frutos não se altera muito com a maior disponibilidade destes (Figura 8), a queda da proporção de ingestão de recursos totais deve estar relacionada à queda no número de frutos. Plantas com um número muito grande de recursos têm maior proporção de inflorescências do que frutos. É possível ver também que não há uma proporção padrão de retirada que pudesse indicar um ponto para o abandono da mancha.

Segundo a teoria de forrageio em manchas, a decisão de quanto se alimentar na próxima mancha e que direção tomar pode estar relacionado à quantidade de alimento ingerido na mancha inicial e/ou à distância percorrida entre manchas (Stephens & Krebs 1986). No caso do veado-campeiro os valores de autocorrelação do forrageio de cada indivíduo estudado mostram que a quantidade de itens ingeridos em uma planta não influenciou a quantidade de itens ingeridos nas próximas plantas. A distância de forrageio à próxima planta florida tampouco foi influenciada pela quantidade de itens ingeridos.

A quantidade de itens ingeridos está mais relacionada à disponibilidade de recursos totais e preferenciais na planta, como já mostrado anteriormente. Já a distância entre manchas, que pode ser considerada correlacionada ao tempo de viagem entre manchas, deve estar mais associada à disponibilidade do alimento no ambiente, ou seja, à densidade de indivíduos de *M. tripartita*. Podadores normalmente orientam seu movimento para maximizar a taxa de encontro com o item alimentar preferido, como foi verificado no estudo comportamental de *Odocoileus virginianus* (Etzenhouser et al. 1998). Os caminhos de forrageio de *O. virginianus* foram tortuosos e direcionados aos arbustos de espécies de *Acacia*. No estudo de Garine-Wichatitsky *et al.* (2004) a disponibilidade de arbustos no ambiente também influenciou o forrageio de impalas e kudus (*Aepyceros melampus* e *Tragelaphus strepsiceros*, respectivamente), que se movimentaram de forma a favorecer o encontro de arbustos. Como *M. tripartita* é um arbusto que se sobressai da vegetação campestre é possível que o veado modele a sua movimentação de acordo com as manchas visualizadas, apesar de não ser
possível avaliar a distância e qualidade da mancha. Segundo Perez-barberia et al. (2007), manchas que diferem em qualidade ou quantidade de alimento provêm pistas visuais que ajudam herbívoros a identificá-las à distância antes de visitá-las.


Raramente os herbívoros causam depleção total nas manchas, assim como foi encontrado neste estudo para o veado-campeiro. Astrom et al. (1990) também encontraram que, na maioria dos casos de forrageio em árvores por diferentes espécies de podadores, a quantidade de biomassa removida ficou longe da quantidade total disponível. Illius et al. (2002) tampouco encontraram evidências de depleção em manchas de forrageio de Capreolus capreolus. Há várias limitações no forrageio de herbívoros que os impedem ou inibem de consumir toda a biomassa existente na planta. Primeiramente, a remoção incompleta de biomassa pode ser explicada por ser indesejável a indivíduos solitários ficarem em um local por muito tempo devido à exposição a predadores (Brown 1988). A saciedade do animal, apesar de não ser aparente, é outro fator a ser levado em consideração, pois pode diminuir o consumo em certas ocasiões, levando a algumas respostas não relacionadas à disponibilidade de alimento (Stephens & Krebs 1986).

O ajuste utilizado, LOWESS, para avaliar o forrageio do veado-campeiro evidencia que os dados possuem muito ruído. A disponibilidade de alimento, a saciedade do animal e o risco de predação são aspectos já discutidos que podem estar colaborando para este ruído. Mas há muitos outros fatores que podem influenciar o forrageio de um herbívoro. Diferenças individuais podem influenciar o forrageio devido a preferências alimentares mais especialistas ou generalistas, influência do ambiente ou até mesmo genética (Searle et al. 2010).

No forrageio em manchas de M. tripartita, a presença de frutos parece ser o fator principal de decisão do forrageio. A quantidade de frutos, itens preferenciais, explicou melhor o padrão de consumo, semelhante à resposta funcional do tipo I. Essa resposta é incomum para herbívoros, mas pode estar associada ao pequeno tamanho do fruto e quantidade limitada por planta. O formato das respostas funcionais de herbívoros é uma base para se compreender aspectos de ingestão energética e sua relação com o fitness desses animais, além de processos ecológicos num nível individual, como a dominância e interferência do forrageio no ambiente.

Como este estudo foi realizado com observações de animais em vida livre, há muito ruído nos dados coletados o que diminui a explicabilidade dos ajustes. Apesar de vários estudos mostrarem evidências da teoria do forrageio ótimo em mamíferos herbívoros, a maioria desses trabalhos foram feitos em condições de cativeiro ou semi-cativeiro, muitas vezes com animais domesticados ou treinados, o que controla várias outras características do ambiente, como clima e outros. Como o forrageio de herbívoros nunca obedece a uma regra simples e estrita porque eles sempre enfrentam um ambiente complexo e em constante mudança (Wieren 1996), estudos como esse com o veado-campeiro sempre irão mostrar muitos ruídos.

É importante ressaltar que estratégias de forrageio não são constantes no tempo e no espaço devido à complexidade e heterogeneidade de hábitats e diferentes abundâncias de recursos (Bergman et al. 2001). A taxa de ingestão de alimento também pode variar entre espécies vegetais (Illius et al. 2002), o que significa que o comportamento de forrageio do veado-campeiro descrito neste trabalho não pode ser extrapolado para outras espécies sem ponderações. Animais forrageando em hábitats diferentes têm taxas de ingestão distinta, pois diferentes espécies ou diferentes arquiteturas da planta podem afetar a taxa de ingestão e tamanho da mordida do herbívoros (Spalinger et al. 1988). Estudos em outros hábitats, principalmente nos pampas argentinos aonde o veado-campeiro é considerado um pastador,
seriam interessantes para conhecer melhor sobre o comportamento de forrageio do veado-campeiro em diferentes ambientes. Estudos comportamentais de fêmeas de veado-campeiro também são importantes, uma vez que já foram documentadas diferenças de forrageio entre sexos (Ginnett & Demment 1997).
REFERÊNCIAS


HOLLING, C S. 1959. Some characteristics of simple types of predation and parasitism. The canadian Entomologist, XCI(7).


CONCLUSÃO GERAL

Nesse estudo foram encontradas espécies que responderam ao fogo e à herbivoria. Apesar do fogo não ter concentrado a alimentação dos herbívoros em alguns locais, foi possível encontrar efeitos negativos da herbivoria em duas espécies de planta. Em situações de incêndio natural os efeitos poderão ser mais pronunciados e verificados em outras espécies.

O veado-campeiro apresentou um forrageio diferente do esperado, apresentando uma ingestão similar à resposta funcional tipo I, rara em herbívoros. O estudo, porém, ficou restrito a uma espécie de planta, o que pode não caracterizar comportamento geral de forrageio do veado-campeiro.

REFERÊNCIAS


